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Abstract17

We investigate the impact of modifying the constraining relations of a Constraint Satisfaction18

Problem (CSP) instance, with a fixed template, on the set of solutions of the instance. More precisely19

we investigate sensitive instances: an instance of the CSP is called sensitive, if removing any tuple20

from any constraining relation invalidates some solution of the instance. Equivalently, one could21

require that every tuple from any one of its constraints extends to a solution of the instance.22

Clearly, any non-trivial template has instances which are not sensitive. Therefore we follow23

the direction proposed (in the context of strict width) by Feder and Vardi in [12] and require that24

only the locally consistent instances be sensitive. We provide a full algebraic characterization of25

templates with this property, under the mild assumption that they are idempotent: we show that an26

idempotent algebra A has a k + 2 variable near unanimity term operation if and only if any instance27

resulting from running the (k, k + 1)-consistency algorithm on an instance over A2 is sensitive.28

A version of our result, without idempotency but with the sensitivity condition holding in a29

variety of algebras, settles a question posed by G. Bergman about systems of projections of algebras30

that arise from some subalgebra of a finite product of algebras.31

Our results hold for infinite (albeit in the case of A2 idempotent) algebras as well and exhibit a32

surprising similarity to the strict width k condition proposed by Feder and Vardi. Both conditions33

can be characterized by the existence of a near unanimity operation, but the arities of the operations34

differ by 1.35
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2 Sensitive instances of the Constraint Satisfaction Problem

1 Introduction48

One important algorithmic approach to deciding if a given instance of the Constraint49

Satisfaction Problem (CSP) has a solution is to first consider whether it has a consistent set50

of local solutions. Clearly, the absence of local solutions will rule out having any (global)51

solutions, but in general having local solutions does not guarantee the presence of a solution.52

A major thrust of the recent research on the CSP has focussed on coming up with suitable53

notions of local consistency and then characterizing those CSPs for which local consistency54

implies outright consistency or some stronger property.55

In this paper we will consider a new notion of local consistency and provide an algebraic56

characterization of it over collections of CSP instances whose constraint relations are confined57

to a set prescribed by a finite relational structure (sometimes called a template), an algebra58

(possibly infinite), or a collection of algebras. A good source for background material is the59

survey article [7].60

Early results of Feder and Vardi [12] and also Jeavons, Cooper, and Cohen [15] establish61

that when a template A has a special type of polymorphism, called a near unanimity operation,62

then not only will an instance of the CSP over A that has a suitably consistent set of local63

solutions have a solution, but that any partial solution of it can always be extended to a64

solution. The notion of local consistency that we investigate in this paper is related to that65

considered by these researchers but that, as we shall see, is weaker.66

Central to our investigation are near unanimity operations. These are operations67

n(x1, . . . , xk+1) on a set A of arity k + 1, for some k > 1, that satisfy the equalities68

n(b, a, a, . . . , a) = n(a, b, a, . . . , a) = · · · = n(a, a, . . . , a, b) = a69

for all a, b ∈ A. These operations have played an important role in the development of70

universal algebra and first appeared in the 1970’s in the work of Baker and Pixley [1] and71

Huhn [14]. More recently they have been used in the study of the CSP [12, 15] and related72

questions [2, 11]. The main results of this paper can be expressed in terms of the CSP and73

also in algebraic terms and we start by presenting them from both perspectives. In the74

concluding section, Section 5, a translation of parts of our results into a relational language75

is provided, along with some open problems.76

1.1 CSP viewpoint77

In their seminal paper, Feder and Vardi [12] introduced the notion of bounded width for78

the class of CSP instances over a finite template A. Their definition of bounded width was79

presented in terms of the logic programming language DATALOG but there is an equivalent80

formulation using local consistency algorithms, also given in [12]. Given a CSP instance I81

and k < l, the (k, l)-consistency algorithm will produce a new instance having all k variable82

constraints that can be inferred by considering l variables at a time of I. This algorithm83

rejects I if it produces an empty constraint. The class of CSP instances over a finite template84

A will have width (k, l) if the (k, l)-consistency algorithm rejects all instances from the class85

that do not have solutions, i.e., the (k, l)-consistency algorithm can be used to decide if a86

given instance from the class has a solution or not. The class has bounded width if it has87

width (k, l) for some k < l.88

A lot of effort, in the framework of the algebraic approach to the CSP, has gone in89

to analyzing various properties of instances that are the outputs of these types of local90

consistency algorithms. On one end of the spectrum of the research is a rather wide class of91



L. Barto, M. Kozik, J. Tan and M. Valeriote 3

templates of bounded width [5] and on the other a very restrictive class of templates having92

bounded strict width [12].93

To be more precise let us define a CSP instance I to be (V, C) where V is a set of94

variables, and C is a set of constraints of the form ((x1, . . . , xn), R) where all xi are in V95

and R is an n-ary relation over (possibly infinite) sets Ai associated to each variable xi. A96

solution of I is an evaluation f of variables such that, for every ((x1, . . . , xn), R) ∈ C we have97

(f(x1), . . . , f(xn)) ∈ R; a partial solution is a partial function satisfying the same condition.98

Instances produced by the (k, l)-consistency algorithm have uniformity and consistency99

properties that we highlight. The instance I = (V, C) is k-uniform if all of its constraints100

are k-ary and every set of k variables is constrained by a single constraint. An instance is a101

(k, l)-instance if it is k-uniform and for every choice of a set W of l variables no additional102

information about the constraints can be derived by restricting the instance to the variables103

in W . This last, very important, property can be rephrased in the following way: for every104

set W ⊆ V of size l; every tuple in every constraint of I|W participates in a solution to105

I|W (where I|W is obtained from I by removing all the variables outside of W and all the106

constraints that contain any such variables).107

Following the algebraic approach to the CSP we replace templates A with algebras A and108

define CSP(A) to be the class of CSP instances whose constraint relations are amongst those109

relations over A that are preserved by the operations of A (i.e., they are subuniverses of110

powers of A). A number of important questions about the CSP can be reduced to considering111

templates that have all of the singleton unary relations [7]; the algebraic counterpart to112

these types of templates are the idempotent algebras (all operations of the algebra satisfy113

f(a, . . . , a) = a for every possible argument a). As demonstrated in Example 12, several of114

the results in this paper do not hold in the absence of idempotency.115

Consider the notion of strict width k introduced by Feder and Vardi [12, Section 6.1.2].116

For A a template, the class of instances of the CSP over A has strict width k if whenever117

the (k, k + 1)-consistency algorithm does not reject an instance I from the class then “it118

should be possible to obtain a solution by greedily assigning values to the variables one at a119

time while satisfying the inferred k-constraints.” It can be seen that this is equivalent to the120

property that if I is the result of applying the (k, k+ 1)-consistency algorithm to an instance121

from the class that has some solution, then any partial solution of I can be extended to a122

solution. In [12, Theorem 25] Feder and Vardi prove that this is also equivalent to A having123

a near unanimity operation of arity k + 1 as a polymorphism.124

In contrast to the situation for finite templates, when considering this extension property125

for (k, k + 1)-instances of CSP(A) for A an algebra, one cannot conclude, in general, that A126

will have a (k + 1)-ary near unanimity term operation, even if A is assumed to be finite and127

idempotent.128

I Example 1. Consider the rather trivial algebra A that has universe {0, 1} and no basic129

operations. If I is a (2, 3)-instance over A then since every binary relation over {0, 1} is130

invariant under the majority operation on {0, 1} it follows that every partial solution of I131

can be extended to a solution. Of course, A does not have a near unanimity term operation132

of any arity.133

What this example demonstrates is that in general, for a fixed k, the k-ary constraint134

relations arising from an algebra do not capture that much of the structure of the algebra.135

Example 12 provides further evidence for this.136

Our first theorem shows that for finite idempotent algebras A, by considering a slightly137

bigger set of (k, k + 1)-instances, over CSP(A2), rather than over CSP(A), we can detect the138
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presence of a (k+1)-ary near unanimity term operation. We note that every (k, k+1)-instance139

over A can be easily encoded as a (k, k + 1)-instance over A2.140

I Theorem 2. Let A be a finite, idempotent algebra and k > 1. The following are equivalent:141

1. A (or equivalently A2) has a near unanimity term operation of arity k + 1;142

2. in every (k, k + 1)-instance over A2, every partial solution extends to a solution;143

3. in every (k, k + 1)-instance over A2 on k + 2 variables, every partial solution extends144

to a solution.145

When A is the algebra of polymorphisms of a finite template A that has all of the146

singleton unary relations, then we obtain another characterization of when the class of CSP147

instances over A has strict width k, namely that the partial solution extension property need148

only be checked for (k, k + 1)-instances (over A2) in k + 2 variables. In Theorem 10 we149

extend our result to infinite idempotent algebras by working with local near unanimity term150

operations.151

Going back the original definition of strict width: “it should be possible to obtain a152

solution by greedily assigning values to the variables one at a time while satisfying the153

inferred k-constraints” we note that the requirement that the assignment should be greedy is154

rather restrictive. The main theorem of this paper investigates an arguably more natural155

concept where the assignment need not be greedy. Formally, our condition is that in a156

(k, k + 1)-instance every tuple in every constraint extends to a solution. Equivalently, every157

(k, k + 1)-instance is a (k, n)-instance, where n is the number of variables present in the158

instance. Even more naturally: removing any tuple from any constraining relation of a159

(k, k + 1)-instance alters the space of solutions of that instance — we call such instances160

sensitive. We provide the following characterization.161

I Theorem 3. Let A be a finite, idempotent algebra and k > 1. The following are equivalent:162

1. A (or equivalently A2) has a near unanimity term operation of arity k + 2;163

2. every (k, k + 1)-instance over A2 is sensitive;164

3. every (k, k + 1)-instance over A2 on k + 2 variables is sensitive.165

Exactly as in Theorem 2 we can consider infinite algebras at the cost of using local near166

unanimity term operations (see Theorem 11).167

In conclusion we investigate a natural property of instances motivated by the definition168

of strict width and provide a characterization of this new condition in algebraic terms. A169

surprising conclusion is that the new concept is, in fact, very close to the strict width concept,170

i.e., for a fixed k one characterization is equivalent to a near unanimity operation of arity171

k + 1 and the second of arity k + 2.172

1.2 Algebraic viewpoint173

Our work has as an antecedent the papers of Baker and Pixley [1] and of Bergman [8] on174

algebras having near unanimity term operations. In these papers the authors considered175

subalgebras of products of algebras and systems of projections associated with them. Baker176

and Pixley showed that in the presence of a near unanimity term operation, such a subalgebra177

is closely tied with its projections onto small sets of coordinates.178

A variety of algebras is a class of algebras of the same signature that is closed under179

taking homomorphic images, subalgebras, and direct products. For A an algebra, V(A)180

denotes the smallest variety that contains A and is called the variety generated by A. A181

variety V has a near unanimity term of arity k + 1 if there is some (k + 1)-ary term of V182

whose interpretation in each member of V is a near unanimity operation.183

Here is one version of the Baker-Pixley Theorem:184
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I Theorem 4 (see Theorem 2.1 from [1]). Let A be an algebra and k > 1. The following are185

equivalent:186

1. A has a (k + 1)-ary near unanimity term operation;187

2. for every r > k and every Ai ∈ V(A), 1 ≤ i ≤ r, every subalgebra R of
∏r
i=1 Ai188

is uniquely determined by the projections of R on all products Ai1 × · · · × Aik for189

1 ≤ i1 < i2 < · · · < ik ≤ r;190

3. the same as condition 2, with r set to k + 1.191

In other words, an algebra has a (k+1)-ary near unanimity term operation if and only if every192

product of algebras from V(A) is uniquely determined by its system of k-fold projections193

into its factor algebras. A natural question, extending the result above, was investigated by194

Bergman [8]: when does a “system of k-fold projections” arise from a product algebra?195

Note that such a system can be viewed as a k-uniform CSP instance: indeed, following196

the notation of Theorem 4, we can introduce a variable xi for each i ≤ r and a constraint197

((xi1 , . . . , xik ); proji1,...,ik R) for each 1 ≤ i1 < i2 < · · · < ik ≤ r. In this way the original198

relation R consists of solutions of the created instance (but in general will not contain all of199

them). Note that, in this particular instance, different variables can be evaluated in different200

algebras. We will say that I is a CSP instance in the variety V (denoted I ∈ CSP(V)) if201

all the constraining relations of I are algebras in V. In the language of the CSP, Bergman202

proved the following:203

I Theorem 5 ([8]). If V is a variety that has a (k + 1)-ary near unanimity term then every204

(k, k + 1)-instance in V is sensitive.205

In commentary that Bergman provided on his proof of this theorem he noted that a206

stronger conclusion could be drawn from it and he proved the following theorem. We note207

that this theorem anticipates the results from [12] and [15] dealing with templates having208

near unanimity operations as polymorphisms.209

I Theorem 6 ([8]). Let k > 1 and V be a variety. The following are equivalent:210

1. V has a (k + 1)-ary near unanimity term;211

2. any partial solution of a (k, k + 1)-instance over V extends to a solution.212

In Appendix A we present a proof of this theorem.213

Theorem 5 provides a partial answer to the question that Bergman posed in [8], namely214

that in the presence of a (k+1)-ary near unanimity term, a necessary and sufficient condition215

for a k-fold system of algebras to arise from a product algebra is that the associated CSP216

instance is a (k, k + 1)-instance.217

In [8] Bergman asked whether the converse to Theorem 5 holds, namely, that if the stated218

equivalence holds for all k-uniform instances defined over algebras from a variety, must the219

variety have a (k + 1)-ary near unanimity term? He provided examples that suggested that220

the answer is no, and we confirm this by proving that the condition is actually equivalent221

to the variety having a near unanimity term of arity k + 2. The main result of this paper,222

viewed from the algebraic perspective (but stated in terms of the CSP), is the following:223

I Theorem 7. Let k > 1. A variety V has a (k + 2)-ary near unanimity term if and only if224

each (k, k + 1)-instance of the CSP over algebras from V is sensitive.225

The “if direction” of this theorem is proved in Section 3, while a proof of the “only if direction”226

is provided in Appendix D. We note that a novel and significant feature of this result is that227

it does not assume any finiteness or idempotency of the algebras involved.228
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1.3 Structure of the paper229

The paper is structured as follows. In the next section we introduce local near unanimity230

operations and state Theorem 2 and Theorem 3 in their full power. In Section 3 we collect231

the proofs that establish the existence of (local) near unanimity operations. In Section 4 we232

provide a sketch of the proof showing that, in the presence of a near unanimity operation233

of arity k + 2, the (k, k + 1)-instances are sensitive. A full proof of this fact, which is the234

main contribution of this paper, can be found in Appendix D. Finally, Section 5 contains235

conclusions.236

Appendix A and Appendix B are provided for the convenience of the reader. They prove237

facts required for the classification, but known before, and facts which can be proved by238

minor adaptations of known reasoning. Appendix C contains a proof of a new loop lemma,239

which can be of independent interest, and is necessary in the proof in Appendix D. Finally240

Appendix D contains, as already mentioned, the main technical contribution of the paper.241

2 Details of the CSP viewpoint242

In order to state our results in their full strength, we need to define local near unanimity243

operations. This special concept of local near unanimity operations is required, when244

considering infinite algebras.245

I Definition 8. Let k > 1. An algebra A has local near unanimity term operations of arity246

k + 1 if for every finite subset S of A there is some (k + 1)-ary term operation nS of A such247

that248

nS(b, a, . . . , a, a) = nS(a, b, a, . . . , a) = · · · = nS(a, a, . . . , b, a) = nS(a, a, . . . , a, b) = a.249

for all a, b ∈ S.250

It should be clear that, for finite algebras, having local near unanimity term operations of251

arity k + 1 and having a near unanimity term operation of arity k + 1 are equivalent, but252

for arbitrary algebras they are not. The following provides a characterization of when an253

idempotent algebra has local near unanimity term operations of some given arity; it will254

be used in the proofs of Theorems 10 and 11. It is similar to Theorem 4 and is proved in255

Appendix A.256

I Theorem 9. Let A be an idempotent algebra and k > 1. The following are equivalent:257

1. A has local near unanimity term operations of arity k + 1;258

2. for every r > k, every subalgebra of Ar is uniquely determined by its projections onto all259

k-element subsets of coordinates;260

3. every (k + 1)-generated subalgebra of Ak+1 is uniquely determined by its projections onto261

all k-element subsets of coordinates.262

We are ready to state Theorem 2 in its full strength:263

I Theorem 10. Let A be an idempotent algebra and k > 1. The following are equivalent:264

1. A (or equivalently A2) has local near unanimity term operations of arity k + 1;265

2. in every (k, k + 1)-instance over A2, every partial solution extends to a solution;266

3. in every (k, k + 1)-instance over A2 on k + 2 variables, every partial solution extends267

to a solution.268

Proof. Obviously condition 2 implies condition 3. A proof of condition 3 implying condition269

1 can be found in Section 3. The implication from 1 to 2 is covered by Theorem 6. J270



L. Barto, M. Kozik, J. Tan and M. Valeriote 7

Analogously, the main result of the paper, for idempotent algebras, and the full version of271

Theorem 3 states:272

I Theorem 11. Let A be an idempotent algebra and k > 1. The following are equivalent:273

1. A (or equivalently A2) has local near unanimity term operations of arity k + 2;274

2. every (k, k + 1)-instance over A2 is sensitive;275

3. every (k, k + 1)-instance over A2 on k + 2 variables is sensitive.276

Proof. Obviously condition 2 implies condition 3. For condition 3 implying condition 1 see277

Section 3, while for the remaining implication, see Appendix D. J278

I Example 12. The following examples show that in Theorems 9, 10, and 11 the assumption279

of idempotency is necessary. For n > 2, let Sn be the algebra with domain [n] = {1, 2, . . . , n}280

and with basic operations consisting of all unary operations on [n] and all non-surjective281

operations on [n] of arbitrary arity. The collection of such operations forms a finitely282

generated clone, called the Słupecki clone. Relevant details of these algebras can be found in283

[16, Example 4.6] and [20]. It can be shown that for m < n, the subuniverses of Smn consist284

of all m-ary relations Rθ over [n] determined by a partition θ of [m] by285

Rθ = {(a1, . . . , am) | ai = aj whenever (i, j) ∈ θ}.286

These rather simple relations are preserved by any operation on [n], in particular by any287

majority operation or more generally, by any near unanimity operation.288

It follows from Theorem 6 that if k > 1 and I is a (k, k + 1)-instance of CSP(S2
2k+1)289

then any partial solution of I extends to a solution. This also implies that I is sensitive.290

Furthermore any subalgebra of Sk+1
k+2 is determined by it projections onto all k-element sets291

of coordinates. As noted in [16, Example 4.6], for n > 2, Sn does not have a near unanimity292

term operation of any arity, since the algebra Snn has a quotient that is a 2-element essentially293

unary algebra.294

3 Constructing near unanimity operations295

In this section we collect the proofs providing, under various assumptions, near unanimity or296

local near unanimity operations. That is: the proofs of “3 implies 1” in Theorems 10 and297

Theorem 11 as well as a proof of the “if direction” from Theorem 7.298

In the following proposition we construct instances over A2 (for some algebra A). By299

a minor abuse of notation, we allow in such instances two kinds of variables: variables300

x evaluated in A and variables y evaluated in A2. The former kind should be formally301

considered as variables evaluated in A2 where each constraint enforces that x is sent to302

{(b, b) | b ∈ A}.303

Moreover, dealing with k-uniform instances, we understand the condition “every set of304

k variables is constrained by a single constraint” flexibly: in some cases we allow for more305

constraints with the same set of variables, as long as the relations are proper permutations306

so that every constraint imposes the same restriction.307

I Proposition 13. Let k > 1 and let A be an algebra such that, for every (k, k + 1)-instance308

I over A2 on k + 2 variables every partial solution of I extends to a solution. Then each309

subalgebra of Ak+1 is determined by its k-ary projections.310

Proof. Let R ≤ Ak+1 and we will show that it is determined by the system of projections311

projI(R) as I ranges over all k elements subsets of coordinates. Using R we define the312
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following instance I of CSP(A2). The variables of I will be the set {x1, x2, . . . , xk+1, y12}313

and the domain of each xi is A, while the domain of y12 is A2.314

For U ⊆ {x1, . . . , xk+1} of size k, let CU be the constraint with scope U and constraint315

relation RU = projU (R). For U a (k − 1)-element subset of {x1, . . . , xk+1}, let CU∪{y12} be316

the constraint with scope U ∪ {y12} and constraint relation RU∪{y12} that consists of all317

tuples (bv | v ∈ U ∪ {y12}) such that there is some (a1, . . . , ak+1) ∈ R with bv = ai if v = xi318

and with by12 = (a1, a2).319

The instance I is k-uniform and we will show that it is sensitive. Indeed every tuple in320

every constraining relation originates in some tuple b ∈ R. Setting xi 7→ bi and y12 7→ (b1, b2)321

defines a solution that extends such a tuple.322

In particular I is a (k, k + 1)-instance over A2 with k + 2 variables and so any partial323

solution of it can be extended to a solution. Let b ∈ Ak+1 such that projI(b) ∈ projI(R)324

for all k element subsets I of [k + 1]. Then b is a partial solution of I over the variables325

{x1, . . . , xk+1} and thus there is some extension of it to the variable y12 that produces a326

solution of I. But there is only one consistent way to extend b to y12 namely by setting y12327

to the value (b1, b2). By considering the constraint with scope {x3, . . . , xk+1, y12} it follows328

that b ∈ R, as required. J329

Now we are ready to prove the first implication tackled in this section: 3 implies 1 in330

Theorem 10.331

Proof of “3 implies 1” in Theorem 10. By Theorem 9 it suffices to show that each subal-332

gebra of Ak+1 is determined by its k-ary projections. Fortunately, Proposition 13 provides333

just that. J334

We move on to proofs of “3 implies 1” in Theorem 11 and the “if” direction of Theorem 7.335

Similarly, as in the theorem just proved, we start with a proposition.336

I Proposition 14. Let k > 1 and let A be an algebra such that, every (k, k + 1)-instance I337

over A2 on k + 2 variables is sensitive. Then each subalgebra of Ak+2 is determined by its338

(k + 1)-ary projections.339

Proof. We will show that if R is a subalgebra of Ak+2 then R = R∗ where340

R∗ = {a ∈ Ak+2 | projI(a) ∈ projI(R) whenever |I| = k + 1}.341

In other words, we will show that the subalgebra R is determined by its projections into all342

(k + 1)-element sets of coordinates.343

We will use R and R∗ from the previous paragraph to construct a (k, k + 2)-instance344

I = (V, C) with V = {x5, . . . , xk+2, y12, y34, y13, y24} where each xi is evaluated in A while345

all the y’s are evaluated in A2.346

The set of constraints is more complicated. There is a special constraint on a special347

variable set ((y12, y34, x5, . . . , xk+2), C) where348

C = {((a1, a2), (a3, a4), a5, . . . , ak+2) | (a1, . . . , ak+2) ∈ R∗}.349

The remaining constraints are defined using the relation R. For each set of variables350

S = {v1, . . . , vk} ⊆ V (which is different than the set for the special constraint) we define351

a constraint ((v1, . . . , vk), DS) with (b1, . . . , bk) ∈ DS if and only if there exists a tuple352

(a1, . . . , ak+2) ∈ R such that:353

if vi is xj then bi = aj , and354

if vi is ylm then bi = (al, am).355
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Note that the instance I is k-uniform.356

B Claim 15. I is a (k, k + 1)-instance.357

Let S ⊆ V be a set of size k. If S is not the special variable set, then every tuple in358

the relation constraining S originates in some (b1, . . . , bk+2) ∈ R and, as in Proposition 13,359

sending xi 7→ bi and ylm 7→ (bl, bm) defines a solution that extends such a tuple. We360

immediately conclude, that the potential failure of the (k, k + 1) condition must involve the361

special constraint.362

Thus S = {y12, y34, x5, . . . , xk+2} and if b is a tuple from the special constraint C then363

there is some (a1, . . . , ak+2) ∈ R∗ with364

b = ((a1, a2), (a3, a4), a5, . . . , ak+2).365

The extra variable that we want to extend the tuple b to is either y13 or y24. Both cases are366

similar and we will only work through the details when it is y13. In this case, assigning the367

value (a1, a3) to the variable y13 will produce an extension b′ of b to a tuple over S∪{y13} that368

is consistent with all constraints of I whose scopes are subsets of {y12, y34, x5, . . . , xk+2, y13}.369

To see this, consider a k element subset S′ of {y12, y34, x5, . . . , xk+2, y13} that excludes370

some variable xj . Then, by the definition of R∗ there exists some tuple of the form371

(a1, a2, . . . , aj−1, a
′
j , aj+1, . . . , ak+2) ∈ R. This tuple from R can be used to witness that the372

restriction of b′ to S′ satisfies the constraint DS′ since the scope of this constraint does not373

include the variable xj .374

Suppose that S′ is a k element subset of {y12, y34, x5, . . . , xk+2, y13} that excludes y12.375

By the definition of R∗ there is some tuple of the form (a1, a
′
2, a3, . . . , ak+2) ∈ R. Using this376

tuple it follows that the restriction of b′ to S′ satisfies the constraint DS′ . This is because377

neither of the variables y12 and y24 are in S′ and so the value a′2 ∈ A2 does not matter. A378

similar argument works when S′ is assumed to exclude y34 and the claim is proved.379

Since I is a (k, k + 1)-instance over A2 and it has k + 2 variables then by assumption, I380

is sensitive. We can use this to show that R∗ ⊆ R to complete the proof of this theorem. Let381

(a1, . . . , ak+2) ∈ R∗ and consider the associated tuple b = ((a1, a2), (a3, a4), a5, . . . , ak+2) ∈382

C. Since I is sensitive then this k-tuple can be extended to a solution b′ of I. Using any383

constraints of I whose scopes include combinations of y12 or y34 with y13 or y24 it follows384

that the value of b′ on the variables y13 and y24 are (a1, a3) and (a2, a4) respectively. Then385

considering the restriction of b′ to S = {x5, . . . , xk+2, y13, y24} it follows that (a1, . . . , ak+2) ∈386

R since this restriction lies in the constraint relation DS . J387

We are in a position to provide the two final proofs in this section.388

Proof of “3 implies 1” in Theorem 11. By Theorem 9 it suffices to show that each subal-389

gebra of Ak+2 is determined by its (k + 1)-ary projections. Fortunately Propositions 14390

provides just that. J391

Proof of the “if direction” in Theorem 7. Let F be the free algebra in V generated by x and392

y. Let R ≤ Fk+2 be generated by the tuples (y, x, . . . , x), (x, y, x, . . . , x), . . . , (x, . . . , x, y).393

By Proposition 14, the algebra R is determined by its (k + 1)-ary projections and so the394

constant tuple (x, . . . , x) belongs to R. The term generating this tuple defines the required395

(k + 2)-ary near unanimity operation. J396
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4 Consistent instances are sensitive (sketch of a proof)397

In this section we provide a high-level overview of the proof, showing that if an algebra A (or398

a variety V) has a near unanimity operation of arity k + 2 then all the (k, k + 1)-instances399

over this algebra (or the variety) are sensitive. This will prove the “only if direction” in400

Theorem 7 and “1 implies 2” in Theorem 11.401

Let I = (V, C) be such a (k, k+ 1)-instance. On the highest level the proof is by induction402

on the number of variables of I. That means that we fix a constraint ((x1, . . . , xk), R) of403

I and a tuple (a1, . . . , ak) ∈ R and proceed to define an instance J over V \ {x1, . . . , xk}.404

For each constraint ((y1, . . . , yk), S) of I (except for ((x1, . . . , xk), R)) J will include the405

constraint ((y′1, . . . , y′l), R′) where y′1, . . . , y′l is an enumeration of {y1, . . . , yk} \ {x1, . . . , xk}406

and R′ = projy′1,...,y′l{b ∈ R | byj
= ai if yj = xi}.407

Note that the instance J is not k-uniform, but this problem can be easily dealt with, at408

least in the case when |V | ≥ 2k. One can, for example, remove all the constraints of arity409

< k, by updating a constraining relation of some constraint, of arity k, which has bigger410

scope. Let’s assume that |V | > 2k + 1 and denote the k-uniform instance obtained from J411

by J ′. In this case, at least in the finite case, our proof boils down to a reasoning which412

shows that inside J ′ one can find a (k, k + 1)-instance and the conclusion then follows by413

induction. In the general, infinite case the (k, k + 1)-consistency does not transfer and we414

need to deal with a weaker notion: we use a condition that is equivalent to the solvability of415

specially constructed instances called patterns. See appendix D for details.416

The remaining case i.e., when k + 1 < |V | ≤ 2k + 1, is different. In this case we can show417

directly that every (k, k + 1)-instance compatible with (k + 2)-ary near unanimity is, in fact,418

a (k, |V |)-instance.419

Unfortunately, the full proof is fairly more complicated than the sketch indicates. In420

particular we need to deal with constraints of arity < k and the two cases above are not421

separated: in order to establish even (k, k+2)-consistency we need to construct patterns that,422

only after an application of the loop lemma proved in Appendix C, provide said consistency.423

5 Conclusion424

We have characterized varieties that have sensitive (k, k + 1)-instances of the CSP as those425

that posses a near unanimity term of arity k + 2. From the computational perspective, the426

following corollary is perhaps the most interesting consequence of our results.427

I Corollary 16. Let A be a finite CSP template whose relations all have arity at most k and428

which has a near unanimity polymorphism of arity k + 2. Then every instance of the CSP429

over A, after enforcing the (k, k + 1)-consistency, is sensitive.430

Therefore not only is the (k, k + 1)-consistency algorithm sufficient to detect global431

inconsistency, we also additionally get the sensitivity property. Let us compare this result to432

some previous results as follows. Consider a template A that, for simplicity, has only unary433

and binary relations and that has a near unanimity polymorphism of arity k + 2 ≥ 4. Then434

any instance of the CSP over A satisfies the following.435

1. After enforcing (2, 3)-consistency, if no contradiction is detected, then the instance has a436

solution [4] (this is the bounded width property).437

2. After enforcing (k, k + 1)-consistency, every partial solution on k variables extends to a438

solution (this is the sensitivity property).439
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3. After enforcing (k + 1, k + 2)-consistency, every partial solution extends to a solution [12]440

(this is the bounded strict width property).441

For k + 2 > 4 there is a gap between the first and the second item. Are there natural442

conditions that can be placed there?443

The properties of a template A from the first and the third item (holding for every444

instance) can be characterized by the existence of certain polymorphisms: a near unanimity445

polymorphism of arity k + 2 for the third item [12] and weak near unanimity polymorphisms446

of all arities greater than 2 for the first item [5, 17]. This paper does not give such a direct447

characterization for the second item (essentially, since Theorem 11 involves a square). Is448

there any? Moreover, there are characterizations for natural extensions of the first and the449

third to relational structures with higher arity relations [12, 3]. This remains open for the450

second item as well.451

In parallel with the flurry of activity around the CSP over finite templates, there has been452

much work done on the CSP over infinite ω-categorical templates [9, 19]. These templates453

cover a much larger class of computational problems but, on the other hand, share some454

pleasant properties with the finite ones. In particular, the (k, k+1)-consistency of an instance455

can still be enforced in polynomial time. Corollary 16 can be extended to this setting as456

follows.457

I Corollary 17. Let A be an ω-categorical CSP template whose relations all have arity at458

most k and which has local idempotent near unanimity polymorphisms of arity k + 2. Then459

every instance of the CSP over A, after enforcing the (k, k + 1)-consistency, is sensitive.460

Bounded strict width k of an ω-categorical template was characterized in [10] by the461

existence of a quasi-near unanimity polymorphism n of arity k + 1, i.e.,462

n(y, x, . . . , x) ≈ n(x, y, . . . , x) ≈ · · · ≈ n(x, x, . . . , y) ≈ n(x, x, . . . , x),463

which is, additionally, oligopotent, i.e., the unary operation x 7→ n(x, x, . . . , x) is equal to464

an automorphism on every finite set. This result extends the characterization of Feder and465

Vardi since an oligopotent quasi-near unanimity polymorphism generates a near unanimity466

polymorphism as soon as the domain is finite. On an infinite domain, however, oligopotent467

quasi-near unanimity polymorphisms generate local near unanimity polymorphisms which,468

unfortunately, do not need to be idempotent on the whole domain. Our results thus fall469

short of proving the following natural generalization of Corollary 16 to the infinite.470

I Conjecture 18. Let A be an ω-categorical CSP template whose relations all have arity at471

most k and which has an oligopotent quasi-near unanimity polymorphism of arity k+ 2. Then472

every instance of the CSP over A, after enforcing the (k, k + 1)-consistency, is sensitive.473

To confirm the conjecture, a new approach, that does not use a loop lemma, will be474

needed since there are examples of ω-categorical structures having oligopotent quasi-near475

unanimity polymorphisms for which the counterpart to Theorem 26 does not hold. Indeed,476

one such an example is the infinite clique.477

References478

1 Kirby A. Baker and Alden F. Pixley. Polynomial interpolation and the Chinese remainder479

theorem for algebraic systems. Math. Z., 143(2):165–174, 1975. doi:10.1007/BF01187059.480

2 Libor Barto. Finitely related algebras in congruence distributive varieties have near unanimity481

terms. Canad. J. Math., 65(1):3–21, 2013. doi:10.4153/CJM-2011-087-3.482

http://dx.doi.org/10.1007/BF01187059
http://dx.doi.org/10.4153/CJM-2011-087-3


12 Sensitive instances of the Constraint Satisfaction Problem

3 Libor Barto. The collapse of the bounded width hierarchy. J. Logic Comput., 26(3):923–943,483

2016. doi:10.1093/logcom/exu070.484

4 Libor Barto and Marcin Kozik. Congruence distributivity implies bounded width. SIAM J.485

Comput., 39(4):1531–1542, December 2009. doi:10.1137/080743238.486

5 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency487

methods. J. ACM, 61(1):3:1–3:19, January 2014. doi:10.1145/2556646.488

6 Libor Barto and Marcin Kozik. Absorption in Universal Algebra and CSP. In Andrei489

Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity and490

Approximability, volume 7 of Dagstuhl Follow-Ups, pages 45–77. Schloss Dagstuhl–Leibniz-491

Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.45.492

7 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In493

Andrei Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity494

and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-495

Zentrum für Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.496

8 George M. Bergman. On the existence of subalgebras of direct products with prescribed d-fold497

projections. Algebra Universalis, 7(3):341–356, 1977. doi:10.1007/BF02485443.498

9 Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mémoire499

d’habilitation à diriger des recherches, Université Diderot – Paris 7, 2012. URL: http:500

//arxiv.org/abs/1201.0856.501

10 Manuel Bodirsky and Víctor Dalmau. Datalog and constraint satisfaction with infinite502

templates. Journal of Computer and System Sciences, 79(1):79 – 100, 2013. doi:https:503

//doi.org/10.1016/j.jcss.2012.05.012.504

11 H. Chen, M. Valeriote, and Y. Yoshida. Testing assignments to constraint satisfaction problems.505

In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages506

525–534, Oct 2016. doi:10.1109/FOCS.2016.63.507

12 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP508

and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput.,509

28(1):57–104 (electronic), 1999. doi:10.1137/S0097539794266766.510

13 Jonah Horowitz. Computational complexity of various Mal’cev conditions. Internat. J. Algebra511

Comput., 23(6):1521–1531, 2013. doi:10.1142/S0218196713500343.512

14 András Huhn. Schwach distributive Verbände. Acta Fac. Rerum Natur. Univ. Comenian.513

Math., pages 51–56, 1971.514

15 Peter Jeavons, David Cohen, and Martin C. Cooper. Constraints, consistency and closure.515

Artificial Intelligence, 101(1-2):251–265, 1998. doi:10.1016/S0004-3702(98)00022-8.516

16 Emil W. Kiss and Péter Pröhle. Problems and results in tame congruence theory. A survey of the517

’88 Budapest Workshop. Algebra Universalis, 29(2):151–171, 1992. doi:10.1007/BF01190604.518

17 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations of519

several Maltsev conditions. Algebra Universalis, 73(3-4):205–224, 2015. doi:10.1007/520

s00012-015-0327-2.521

18 Miroslav Olšák. The weakest nontrivial idempotent equations. Bulletin of the London522

Mathematical Society, 49(6):1028–1047, 2017. doi:10.1112/blms.12097.523

19 Michael Pinsker. Algebraic and model theoretic methods in constraint satisfaction.524

arXiv:1507.00931, 2015.525

20 Ágnes Szendrei. Rosenberg-type completeness criteria for subclones of Slupecki’s clone.526

Proceedings of The International Symposium on Multiple-Valued Logic, pages 349–354, 2012.527

doi:10.1109/ISMVL.2012.54.528

http://dx.doi.org/10.1093/logcom/exu070
http://dx.doi.org/10.1137/080743238
http://dx.doi.org/10.1145/2556646
http://dx.doi.org/10.4230/DFU.Vol7.15301.45
http://dx.doi.org/10.4230/DFU.Vol7.15301.1
http://dx.doi.org/10.1007/BF02485443
http://arxiv.org/abs/1201.0856
http://arxiv.org/abs/1201.0856
http://arxiv.org/abs/1201.0856
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2012.05.012
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2012.05.012
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2012.05.012
http://dx.doi.org/10.1109/FOCS.2016.63
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1142/S0218196713500343
http://dx.doi.org/10.1016/S0004-3702(98)00022-8
http://dx.doi.org/10.1007/BF01190604
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1007/s00012-015-0327-2
http://dx.doi.org/10.1112/blms.12097
http://dx.doi.org/10.1109/ISMVL.2012.54


L. Barto, M. Kozik, J. Tan and M. Valeriote 13

A Proofs of Theorems 6 and 9529

The first result is due to Bergman [8], we provide a short proof for the convenience of the530

reader.531

I Theorem 6. Let k > 1 and V be a variety. The following are equivalent:532

1. V has a (k + 1)-ary near unanimity term;533

2. any partial solution of a (k, k + 1)-instance over V extends to a solution.534

Proof of Theorem 6. A straightforward modification of the “if direction” of the proof of535

Theorem 7, using Proposition 13 in place of Proposition 14 shows that the second condition536

implies the existence of a (k + 1)-ary near unanimity term (also see [8, Lemma 11]). For537

the converse, suppose that V has a (k + 1)-ary near unanimity term n(x1, . . . , xk+1) and let538

I = (V, C) be a (k, k + 1)-instance of CSP(V).539

Let n = |V |. We will show by induction on r < n that if W ⊆ V with |W | = r then any540

solution of I|W can be extended to a solution of I|W∪{v} for any v ∈ V \W . From this, the541

implication will follow. By the assumption that I is a (k, k + 1)-instance it follows that this542

property holds for r = k. So, assume that k < r < n and suppose that W ⊆ V with |W | = r.543

Let v ∈ V \W and let f be a solution of I|W .544

Fix some listing of the elements of W , say W = {v1, v2, . . . , vr} and for 1 ≤ i ≤ r let545

Wi = (W \{vi})∪{v}. By induction, there is a solution fi of I|Wi
that extends the restriction546

of f to W \ {vi}, for 1 ≤ i ≤ k + 1. We claim that the extension of f to W ∪ {v} by setting547

f(v) = n(f1(v), f2(v), . . . , fk+1(v)) produces a solution of I|W∪{v}.548

We need to show that if U ⊆ W ∪ {v} with |U | = k then (f(u) | u ∈ U) satisfies the549

unique constraint (U,R) of I with scope U . When U ⊆ W , this is immediate, so assume550

that v ∈ U . For 1 ≤ i ≤ k + 1, let gi be the restriction of fi to U , if vi /∈ U and otherwise551

let gi be some partial solution of I|U that extends the restriction of fi to U \ {vi}. Since552

each gi satisfies the constraint (U,R) then so does n(g1, g2, . . . , gk+1). Using that n is a near553

unanimity term it can be shown that this element is equal to f|U , as required. J554

The next theorem is a variation of the Baker-Pixley [1] result for idempotent, not555

necessarily finite, algebras.556

I Theorem 9. Let A be an idempotent algebra and k > 1. The following are equivalent:557

1. A has local near unanimity term operations of arity k + 1;558

2. for every r > k, every subalgebra of Ar is uniquely determined by its projections onto all559

k-element subsets of coordinates;560

3. every (k + 1)-generated subalgebra of Ak+1 is uniquely determined by its projections onto561

all k-element subsets of coordinates.562

Proof of Theorem 9. To show that Condition 1 implies Condition 2, suppose that A has563

local near unanimity term operations of arity k+ 1 and let R be a subalgebra of Ar for some564

r > k. Let a = (a1, . . . , ar) ∈ Ar be a tuple such that for every subset I of [r] of size k, there565

is some element b ∈ R with projI(a) = projI(b). We will show by induction on n ≥ k that if566

n ≤ r then for every subset J of [r] of size n there is some b ∈ R with projJ(a) = projJ(b).567

With n = r we conclude that a ∈ R, as required.568

By assumption, this property holds when n = k. Suppose that it has been established569

for some n with k ≤ n < r and let J be a subset of [r] of size n + 1. By symmetry it570

suffices to consider the case when J = {1, 2, . . . , n+ 1}. For each i, with 1 ≤ i ≤ k + 1, let571

bi ∈ R be such that a and bi agree on the set J \ {i}. Let n(x1, . . . , xk+1) be a (k + 1)-572

ary local near unanimity term operation of A for the subset of A consisting of all of the573
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components of the tuples bi, for 1 ≤ i ≤ k + 1. A straightforward calculation shows that574

b = n(b1, . . . ,bk+1) ∈ R has the desired property.575

Clearly Condtion 2 implies Condition 3. For the remaining implication, we use Corollary576

2.7 from [13] that shows that if A is finite (and idempotent) then it will have a (k + 1)-ary577

near unanimity term operation if and only if for every ai, bi ∈ A, for 1 ≤ i ≤ k + 1, there is578

some term operation t of A such that579

t(b1, a1, a1, . . . , a1) = a1580

t(a2, b2, a2, . . . , a2) = a2581

...582

t(ak+1, ak+1, ak+1, . . . , bk+1) = ak+1.583
584

It can be seen from the proof of this result that if A is not assumed to be finite, then one585

can conclude that it has local near unanimity term operations of arity k + 1 if and only if586

this condition holds for all ai and bi.587

This local term condition can be translated into a statement about subalgebras of Ak+1,588

namely that for every ai, bi ∈ A, for 1 ≤ i ≤ k + 1, the (k + 1)-tuple a = (a1, . . . , ak+1)589

belongs to the subalgebra R of Ak+1 generated by the set of k + 1 tuples590

{(b1, a2, a3, . . . , ak+1), (a1, b2, a3, . . . , ak+1), . . . , (a1, a2, a3, . . . , bk+1)}.591

Our assumption on A guarantees that a belongs to R since any projection of R onto k592

coordinates will contain the corresponding projection of a. Thus A will have local near593

unanimity term operations of arity k + 1. J594

B Proof of Theorem 26595

In this section we present a proof of Theorem 26. The proof is a trivial adaptation of596

reasoning attributed to Ralph McKenzie in [18].597

I Theorem 26. Let A be an idempotent algebra and R ≤ A2 be nonempty and symmetric.598

If R locally absorbs =A, then R contains a loop.599

The remaining part of this section is devoted to a proof of Theorem 26 by the way of600

contradiction.601

Let n denote the arity of the absorbing operations. We choose a counterexample to the602

theorem minimal with respect to n. Then, we fix an algebra A and will call an R ≤ A2 a603

counterexample candidate if it is non-empty, symmetric, locally n-absorbs =A and has no604

loop.605

B Claim 19. Every counterexample candidate has a closed walk of odd length.606

Proof. Since R is nonempty and symmetric we have (a, b), (b, a) ∈ R. Apply Lemma 25 to607

the walk (a, b, a, b, . . . , a/b) of length n− 1 (i.e., n vertices, n− 1 steps) taken twice (where608

the last element is either a or b depending on the parity of n). The lemma provides a directed609

walk of length n connecting the first and last elements. Since R is symmetric all the edges610

are undirected and we obtained a closed walk of odd length. J611

B Claim 20. There exists a counterexample candidate containing a 3-element clique.612
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c1 c1 c2 c3 . . . cn−1 t(c1, c1, c2, c3, . . . , cn−1)

c′1 c′1 c2 c′3 . . . c′n−1 t(c′1, c′1, c2, c
′
3, . . . , c

′
n−1)

c′′1 c′′1 c2 c′′3 . . . c′′n−1 t(c′′1 , c′′1 , c2, c
′′
3 , . . . , cn−1)

d1 d1 c2 d3 . . . dn−1 t(d1, d1, c2, d3, . . . , dn−1)

Figure 1 Solid lines are are S-related and dashed lines are T -related.

Proof. Take a counterexample candidate R; it has an odd cycle, and if it has a triangle we613

are done. Thus the length of a shortest odd cycle is greater than 3. In this case, however614

R ◦R ◦R is a counterexample candidate (we use Lemma 24 to provide local absorption) with615

shorter odd cycle. We proceed this way and, in the end, find a counterexample candidate616

with a 3-cycle (which is a 3-clique). J617

B Claim 21. No counterexample candidate contains an n-element clique.618

Proof. Suppose (a1, . . . , an) is such a clique. We can choose, using the definition of local619

absorption, t such that (t(a1, . . . , an), t(ai, . . . , ai)) ∈ R for all i. We use this fact, and the620

fact that R ≤ A2, to conclude that621 (
t(t(a1, . . . , an), . . . , t(a1, . . . , an)), t(a1, . . . , an)

)
∈ R,622

but, by the idempotency of t, the two elements are equal and we have obtained a loop — a623

contradiction. J624

In order to finish the proof we fix R to be a counterexample candidate with a 3-element625

clique and let a1, . . . , am be distinct, forming a maximal clique in R (such a clique exists626

by the last claim). Let B be the subset of A containing vertices with edges to each of627

a1, . . . , am−2. Note that B is a subuniverse (since A is idempotent) and S = B2 ∩ R is628

nonempty as (am−1, am), (am, am−1) ∈ S.629

Note, that S ≤ B2 is symmetric, nonempty, has no 3-clique and it locally n-absorbs =B .630

We obtain a contradiction by showing that T = S ◦ S ◦ S locally n − 1 absorbs =B. The631

graph T is non-empty, symmetric, has no loop and T ≤ B2. We will fix a one-=B-in-T tuple,632

and construct a finite set of one-=A-in-R tuples such that if t(x1, . . . , xn) is an operation633

of A producing elements of R on the tuples from the last set then t(x1, x1, x2, x3, . . . , xn−1)634

produces an element of T on the original tuple. The theorem we are working to prove clearly635

follows from this fact.636

Let (c1, d1), (c2, d2), . . . , (cn−1, dn−1) be a one-=B-in-T tuple. We consider two cases: in637

case one ci = di for some i > 1 and in case two c1 = d1. In case one (see Figure 1), we assume,638

wlog that i = 2, and find for all j 6= 2 elements c′j , c′′j such that (cj , c′j), (c′j , c′′j ), (c′′j , dj) ∈ S.639

It suffices to take care of the three following one-=A-in-R evaluations:640

(c1, c
′
1), (c1, c

′
1), (c2, c2), (c3, c

′
3), . . . , (cn−1, c

′
n−1),641

(c′1, c′′1), (c′1, c′′1), (c2, c2), (c′3, c′′3), . . . , (c′n−1, c
′′
n−1) and642

(c′′1 , d1), (c′′1 , d1), (c2, c2), (c′′3 , d3), . . . , (c′′n−1, dn−1).643
644
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c1 c1 c2 . . . cn−1 t(c1, c1, c2, . . . , cn−1) ∈ B

c1 a1 c′2 . . . c′n−1 t(c1, a1, c
′
2, . . . , c

′
n−1) ∈ B

a1 c1 c′′2 . . . c′′n−1 t(a1, c1, c
′′
2 , . . . , c

′′
n−1) ∈ B

c1 c1 d2 . . . dn−1 t(c1, c1, d2, . . . , dn−1) ∈ B

Figure 2 Solid lines are are S-related, dashed lines are T -related, and dotted lines are R-related.

In case two (see Figure 2) the situation is a bit more involved, we define c′i, c′′i for all i > 1645

but need 4 evaluations:646

(c1, c1), (c1, a1), (c2, c
′
2) . . . , (cn−1, c

′
n−1),647

(c1, a1), (a1, c1), (c′2, c′′2), . . . , (c′n−1, c
′′
n−1),648

(a1, c1), (c1, c1), (c′′2 , d2), . . . , (c′′n−1, dn−1) and two new ones649

(c1, a1), (a1, a1), (c′2, a1), . . . , (c′n−1, a1),650

(a1, a1), (c1, a1), (c′′2 , a1), . . . , (c′′n−1, a1).651
652

The list contains 5 evaluations, but the second one (included for simplicity) is in fact not a one-653

=A-in-R evaluation, but a usual application of the term to elements ofR. Any term, putting all654

these evaluations in R puts (by idempotency and the fact that all considered elements are adja-655

cent to ai if 1 < i < m− 1) t(c1, a1, c
′
2, . . . , c

′
n−1), t(a1, c1, c

′′
2 , . . . , c

′′
n−1) ∈ B. These elements656

witness the path required to put the pair (t(c1, c1, c2, c3, . . . , cn−1), t(c1, c1, d2, d3 . . . , dn−1))657

in T .658

C New loop lemmata659

A loop lemma is a theorem stating that a binary relation satisfying certain structural and660

algebraic requirements necessarily contains a loop – a pair (a, a). In this section we provide661

two new loop lemmata, Theorem 27 and Theorem 28, which generalize an “infinite loop662

lemma” of Olšák [18] and may be of independent interest. Theorem 28 is a crucial tool for663

the proof presented in Appendix D.664

The algebraic assumptions in the new loop lemmata concern absorption, a concept that665

proved useful in the algebraic theory of CSPs and Universal Algebra [6]. We adjust the666

standard definition to our specific purposes. We begin with a very elementary definition.667

I Definition 22. Let R and S be sets. We call a tuple (a1, . . . , an) a one-S-in-R tuple if for668

exactly one i we have ai ∈ S and all the other ai’s are in R.669

Next we proceed to define a relaxation of the standard absorbing notion. We follow a670

standard notation, silently extending operations of an algebra to powers (by computing them671

coordinate-wise).672

I Definition 23. Let A be an algebra, R ≤ Ak and S ⊆ Ak. We say that R locally n-absorbs673

S if, for every finite set C of one-S-in-R tuples of length n, there is an operation t of A such674

that t(a1, . . . ,an) ∈ R whenever (a1, . . . ,an) ∈ C. We will say that R locally absorbs S, if675

R locally n-absorbs S for some n.676
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a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

· · ·

p1

p2 p3 pn−1

pn

Figure 3 Solid arrows represent tuples from R and dashed arrows represent tuples from S.

Absorption, even in our monstrous form, is stable under various constructions. The677

following lemma lists some of them and we leave it without a proof (the reasoning is identical678

to the one in e.g. Proposition 2 in [6]).679

I Lemma 24. Let A be an algebra, R ≤ A2 and R locally n-absorbs S. Then R−1 locally680

n-absorbs S−1; and R ◦R locally n-absorbs S ◦ S, and R ◦R ◦R locally n-absorbs S ◦ S ◦ S681

etc.682

Let us prove a first basic property of local absorption.683

I Lemma 25. Let A be an idempotent algebra, R ≤ A2 and R locally n-absorbs S. Let684

(a1, . . . , an) and (b1, . . . , bn) be directed walks in R, and let (ai, bi) ∈ S for each i (see685

Figure 3). Then there exists a directed walk from a1 to bn of length n in R.686

Proof. We will show that there is an operation t of the algebra A such that the following687

(n+ 1)-tuple of elements of A is a walk of length n in R from a1 to bn.688

(a1 =t(a1, a1, a1, . . . , a1),689

t(b1, a2, a2, . . . , a2),690

t(b2, b2, a3, . . . , a3),691

...692

t(bn−1, bn−1, . . . , bn−1, an),693

bn =t(bn, bn, bn, . . . , bn)).694
695

In order to choose a proper t we apply the definition of local absorption to the set of (n+ 1)696

one-S-in-R tuples corresponding to the steps in the path. J697

The loop lemma of Olšák concerns symmetric relations absorbing the equality relation698

{(a, a) | a ∈ A}, which is denoted =A. The original result, stated in a slightly different699

language, does not cover the case of local absorption. However, a typographical modification700

of a proof mentioned in [18] shows that the theorem holds. For completeness sake, we present701

this proof in Appendix B.702

I Theorem 26 ([18]). Let A be an idempotent algebra and R ≤ A2 be nonempty and703

symmetric. If R locally absorbs =A, then R contains a loop.704
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In order to apply this theorem in the case of sensitive instances, we need to generalize it.705

In the following two theorems we will gradually relax the requirement that R is symmetric.706

In the first step, we substitute it with a condition requiring a closed, directed walk in the707

graph (i.e., a sequence of possibly repeating vertices, with consecutive vertices connected by708

forward edges and the first and last vertex identical). Recall that R−1 is the inverse relation709

to R and let us denote by R◦l the l-fold relational composition of R with itself.710

I Theorem 27. Let A be an idempotent algebra and R ≤ A2 contain a directed closed711

walk. If R locally absorbs =A, then R contains a loop.712

Proof. Let n denote the arity of the absorbing operations. The proof is by induction on713

l ≥ 0, where l is a number such that there exists a directed closed walk from a1 to a1 of714

length 2l.715

We start by verifying that such an l exists. Take a directed walk (a1, . . . , ak−1, ak = a1)716

in R. We may assume that its length k is at least n, since we can, if necessary, traverse717

the walk multiple times. An application of Lemma 25 to the relations R,=A and tuples718

(a1, . . . , an), (a1, . . . , an) gives us a directed walk from a1 to an of length n. Appending this719

walk with the walk (an, an+1, . . . , ak = a1) yields a directed walk from a1 to a1 of length720

k + 1. In this way, we can get a directed walk from a1 to a1 of any length greater than k.721

Now we return to the inductive proof and start with the base of induction for l = 0 or722

l = 1. If l = 0, then we have found a loop. If l = 1 we have a closed walk of length 2, that is,723

a pair (a, b) which belongs to both R and R−1. We set R′ = R ∩R−1 and observe that R′ is724

nonempty and symmetric, and it is not hard to verify that R′ locally absorbs =A. Olšák’s725

loop lemma, in the form of Theorem 26, gives us a loop in R.726

Finally, we make the induction step from l − 1 to l. Take a closed walk (a1, a2, . . .)727

of length 2l and consider R′ = R◦2. Observe that R′ contains a directed closed walk of728

length 2l−1 (namely (a1, a3, . . .)), and that R′ locally absorbs =A (by Lemma 24), so, by the729

inductive hypothesis, R′ has a loop. In other words, R has a directed closed walk of length 2730

and we are done by the case l = 1. J731

Note that we cannot further relax the assumption on the graph by requiring that, for732

example, it has an infinite directed walk. Indeed the natural order of the rationals (taken733

for R) locally 2-absorbs the equality relation by the binary arithmetic mean operation734

(a+ b)/2 (i.e. all the absorbing evaluations are realized by a single operation). The same735

relation locally 4-absorbs equality with the near unanimity operation n(x, y, z, w) which,736

when applied to a ≤ b ≤ c ≤ d, in any order, returns (b+ c)/2.737

Nevertheless, we can strengthen the algebraic assumption and still provide a loop; the738

following theorem is one of the key components in the proof of Theorem 43 (albeit applied739

there with l = 1).740

I Theorem 28. Let A be an idempotent algebra and R ≤ A2 contain a directed walk of741

length n− 1. If R locally n-absorbs =A and R◦l locally n-absorbs R−1 for some l ∈ N then742

R contains a loop.743

Proof. By applying Lemma 25 similarly as in the proof of Theorem 27, we can get, from a744

directed walk of length n− 1, a directed walk (a1, a2, . . .) of an arbitrary length. Moreover,745

by the same reasoning, for each i and j with j ≥ i+ n− 1, there is a directed walk from ai746

to aj of any length greater than or equal to j − i.747

Consider the relations R′ = R◦ln
2 and S = (R−1)◦n2 , and tuples748

c = (c1, . . . , cn) := (an2 , a(n+1)n, . . . a(2n−1)n), and749

d = (d1, . . . , dn) := (an, a2n . . . , an2)750
751
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By the previous paragraph and the definitions, both c and d are directed walks in R′, and752

(ci, di) ∈ S for each i. Moreover, since R◦l locally n-absorbs R−1, Lemma 24 implies that753

R′ locally absorbs S. We can thus apply Lemma 25 to the relations R′, S and the tuples754

c,d and obtain a directed walk from c1 = an2 to dn−1 = an2 in R′. This closed walk in turn755

gives a closed directed walk in R and we are in a position to finish the proof by applying756

Theorem 27. J757

D Consistent instances are sensitive758

In this section we provide a proof for the “only if direction” in Theorem 7 and “1 implies759

2” in Theorem 11. We will proceed with the two proofs in parallel; in one case we fix an760

algebra A and in the other a variety V. We will assume, without loss of generality, that761

the only operation symbol of V is (k + 2)-ary and is a near unanimity operation for all762

members of V. So, all members of V are idempotent. Formally, in the case of Theorem 11,763

we should be working with instances over A2, but if A has local (k + 2)-ary near unanimity764

term operations, then so does A2 and so we can work directly with an algebra possessing765

local near unanimity term operations and denote it by A. We will remark on the differences766

between these two cases only in the places where we apply near unanimity operations.767

For the purpose of this section we modify the definition of an instance slightly: an768

instance is a triple I = (V, {Ax | x ∈ V }, C), where C = {(S,RS) | S ⊆ V, |S| ≤ k} and769

RS ≤
∏
x∈S Ax. Note that the definition of a CSP instance is, formally, different than our770

standard definition: the variables involved in a constraint are a set and not a tuple. This771

minor modification will allow us to present the proofs more succinctly. In order for the772

interpretation of a constraint to be unique we assume, without loss of generality, that the773

algebras Ax are disjoint. When applying the results of this section in Theorem 7 we will set774

each Ax to be an isomorphic copy of A, and in case of Theorem 11 we will choose isomorphic775

copies from the variety, so that their domains are disjoint.776

The rough idea of the proof is to fix, in a (k, k + 1)-instance, a tuple from the relation777

constraining set of variables Y and consider the instance obtained by removing Y from the778

set of variables and shrinking the constraint relations so that only the tuples extending the779

fixed choice of values for the variables in Y remain. If we were able to show that the obtained780

instance contains a (k, k + 1)-subinstance, both theorems would then follow by induction781

on the number of variables of the instance. It is well known that for instances with finite782

domains, the latter property is equivalent to the solvability of certain relaxed instances,783

here called k-trees. Our strategy for the proof is, in fact, to prove the solvability of k-trees,784

by induction on a measure of complexity of k-trees. Unfortunately, for infinite domains, the785

solvability of k-trees is in general weaker than having a (k, k+ 1)-subinstance, and this brings786

several technical complications into our proof. In particular, we will be working with CSP787

instances, that won’t necessarily be (k, k + 1)-instances, or even k-uniform.788

The remaining parts of this section are organized as follows. In the first subsection we789

introduce concepts that are useful for working with instances and their solutions – patterns790

and realizations. The next subsection studies solvability with a fixed evaluation for k-variables791

and provides two core technical claims for the inductive proof of the solvability of k-trees;792

the proof is then assembled in the third subsection and the missing parts of Theorems 7793

and 11 are derived as a consequence.794

Until Theorem 43 in the last section we fix795

an integer k ≥ 2,796

a variety V with a (k+ 2)-ary near unanimity term in case of Theorem 7 or an algebra A797
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with local near unanimity term operations of arity k + 2 in case of Theorem 11;798

an instance I = (V, {Ax | x ∈ V }, C), where C = {(S,RS) | S ⊆ V, |S| ≤ k} and799

RS ≤
∏
x∈S Ax, such that, for any S′ ⊆ S with |S| ≤ k, the projection of RS onto S′ is800

contained in RS′ (here either every Ax is in a variety V in case of Theorem 7, or Ax is801

an isomorphic copy of A in case of Theorem 11).802

A (k, k + 1)-instance can naturally be expanded to meet the condition in the last item by803

adding the constraints (S′, RS′) for |S′| < k, where RS′ is defined as the projection of RS804

onto S′ for an arbitrary k-element superset S of S′. It is an easy exercise, and we leave it to805

the reader, to verify that this definition does not depend on the choice of S.806

For a tuple of (not necessarily distinct) variables x1, . . . , xl with l ≤ k we denote807

Rx1,...,xl
= {(rx1 , . . . , rxl

) | r ∈ R{x1,...,xl}} ≤
∏l
i=1 Axi . Finally, we set A =

⋃
x∈V Ax.808

D.1 Patterns809

A pattern is a hypergraph whose vertices are labeled by variables and hyperedges indicate810

that constraints should be satisfied. It will be convenient to have the set of hyperedges closed811

under taking subsets.812

I Definition 29. A pattern is a triple P = (P ;F , v), where P is a set of vertices, F is a813

family of at most k-element subsets of P closed under taking subsets, and v is a mapping814

v : P → V . Members of F are called faces and the variable v(i) is referred to as the label of815

i.816

A realization of P is a mapping α : P → A, which is consistent with v, that is, α(i) ∈ Av(i)817

for every i ∈ P , and satisfies every face {f1, . . . , fl} ∈ F , that is, (α(f1), . . . , α(fl)) ∈818

Rv(f1),...,v(fl).819

For clarity, we will always call a mapping from a set of vertices to A (which is not820

necessarily a realization of a pattern) an assignment (denoted α, β, . . . ), a mapping from821

a set of variables to A an evaluation (denoted φ, ρ, . . . ), and a mapping from a set of822

vertices to V a labeling (denoted v). We say that an assignment α extends an evaluation φ if823

α(p) = φ(v(p)) for any p in the domain of α such that v(p) is in the domain of φ.824

Since we assume that the Ax’s are disjoint, any assignment uniquely determines a825

consistent labeling and it makes sense to say that an assignment satisfies a set of vertices826

F , provided |F | ≤ k. Also note that, by the assumptions on I, if an assignment α satisfies827

F , then it satisfies every subset of F . Finally, note that in the same situation α(i) = α(i′)828

whenever v(i) = v(i′).829

A pattern P′ = (P ′;F ′, v′) is a subpattern of P if P ′ ⊆ P , F ′ ⊆ F , and v′ is the restriction830

of v to P ′. By a union of two patterns we mean the set-theoretical union of the vertex sets,831

face sets, and labelings. It can only be formed if there are no collisions among labels.832

The richest patterns are the complete patterns, whose faces are all the subsets of the vertex833

set of size at most k. Note that a realization of a complete pattern with l ≤ k vertices is834

essentially the same as a tuple in the corresponding constraint relation. The most important835

patterns for our purposes are l-trees with l ≤ k. These are, informally, patterns obtained836

from the empty pattern by gradually adding complete patterns with at most l + 1 vertices837

and merging them along a face to the already constructed pattern.838

I Definition 30. Let l ≤ k and let F be a set of labeled vertices. The complete l-tree with839

base F of depth 1 is the complete pattern with vertex set F . The complete l-tree with base F840

of depth d+ 1 is obtained from the complete l-tree P with base F of depth d by adding to P,841
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for every face E of P and every (l + 1− |E|)-element set of variables U , a set G of |U | fresh842

vertices labeled by all elements of U and all the at most l-element subsets of E ∪G as faces.843

An l-tree is a subpattern of a complete l-tree.844

The significance of l-trees is apparent from the following observation.845

I Lemma 31. Assume that I is a (k, k + 1)-instance (with small arity constraints added).846

Let l ≤ k, let P be an l-tree, and let F be a face of P. Then any assignment α : F → A that847

satisfies F can be extended to a realization of P. In particular, every l-tree is realizable.848

Proof. If P is a complete l-tree with base F , then α can be gradually extended to a realization849

of P by a straightforward application of the definition of (k, k + 1) instance. It remains to850

observe that every l-tree with a face F is a subpattern of a complete l-tree with base F . J851

As noted above, realizability of k-trees in some sense even characterizes (k, k+1) instances852

for finite domains. From this perspective it makes sense to use k-trees to measure the853

consistency level (called the quality) of a tuple in a constraint relation and, more generally,854

the consistency level of a realization.855

I Definition 32. Let F be a labeled set of vertices of size at most k. We say that an856

assignment α, whose domain includes F and which is consistent with the labeling, satisfies F857

with quality d if α|F can be extended to a realization of the complete k-tree with base F of858

depth d. A realization α of a pattern P has quality d (or α satisfies P with quality d) if α859

satisfies each face of the pattern with quality d.860

Similarly, we say that an evaluation φ : W → A (where |W | ≤ k) has quality d if the861

corresponding assignment for a |W |-element set of vertices labeled by all the elements of W862

has quality d.863

Informally, an evaluation φ has quality d if it survives d steps in a certain naturally864

defined consistency procedure. Note that a realization of a pattern is the same as a realization865

of quality 1 and a realization of quality d is also a realization of quality d′ for any d′ ≤ d.866

Finally, observe that if an assignment α satisfies F with quality d, then it satisfies every867

subset of F with quality d.868

We finish this subsection with two observations.869

I Lemma 33. The set of quality-d realizations of a pattern P is a subuniverse of
∏
i∈P Av(i).870

Proof. For d=1 the claim is a straightforward consequence of the fact that constraint871

relations are subuniverses of products of Ax’s. Otherwise we observe that the set of quality-d872

realizations of P is the projection of the set of quality-1 realizations of a larger pattern Q to873

P . Indeed, Q can be taken as the pattern obtained from P by appending to every face F the874

complete k-tree with base F of depth d. J875

I Lemma 34. Let E ⊆ F be labeled sets of vertices, E ≤ k, |F | ≤ k + 1, and let α : E → A876

be an assignment which is consistent with the labeling and satisfies E with quality d + 1.877

Then α can be extended to an assignment β : F → A which is consistent with the labeling878

and satisfies each at most k element subset of F with quality d.879

More generally, for any k-tree P, any face F , and any d, there exists d′ such that every880

assignment α : F → A which satisfies F with quality d′ can be extended to a realization of P881

of quality d.882

Proof. The first observation follows from the definitions while the second one is proved by883

induction from the first one. J884
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D.2 Fixing patterns885

A fixing pattern is a pattern together with a specified set Y of fixing variables. The idea is886

to require that any consistent evaluation of Y can be extended to a realization of the whole887

pattern. Since our instance isn’t necessarily a (k, k + 1)-instance the following modification888

is needed.889

I Definition 35. A fixing pattern is a pair (P, Y ), where P is a pattern and Y is a set of890

variables of size at most k. The elements of Y are called fixing variables, the remaining891

variables from v(P ) \ Y are called inner.892

A fixing pattern (P, Y ) is f-realizable if for every d there exists d′ = z(P,Y )(d) ≥ d such893

that every evaluation φ : Y → A of quality d′ can be extended to a realization of P of quality894

d.895

It will be a feature of the proofs in this subsection that the sufficient d′ = z(P,Y )(d) from896

the definition will actually depend only on the “shape” of the fixing pattern: it will not897

depend on the instance, or on the variety, or on the concrete choice of labeling (i.e., the same898

d′ will work for a pattern obtained from P by changing v to rv for any r : V → V ).899

A vertex f of a fixing pattern (P, Y ) is called fixing/inner if the variable v(f) is. Faces900

consisting entirely of inner variables are called inner, the remaining faces are called fixing. A901

fixing face, whose set of inner vertices is F and whose set of labels of fixing vertices is Y ′, is902

denoted [F, Y ′]. Note that the definition of f-realization only depends on the “inner part” of903

the fixing pattern together with the list of those [F, Y ′] that are present in the fixing pattern.904

It will often be convenient to choose P free, that is, the sets of fixing vertices of any two905

maximal fixing faces are disjoint.906

An inner face F is called completely fixed if [F, Y ′] is a (fixing) face for every (k − |F |)-907

element set of variables Y ′ ⊆ Y . If Q is a pattern and Y a set of variables of size at908

most k, which is disjoint from v(Q), then the complete Y -fixing (complete vertex Y -fixing,909

respectively) of Q is the free fixing pattern (P, Y ), whose set of inner faces coincides with the910

set of faces of Q and each inner face (inner vertex, respectively) is completely fixed. Since911

complete fixings are chosen freely, a complete fixing of a k-tree is a k-tree.912

We say that a pattern Q is strongly realizable if each complete fixing of Q is f-realizable.913

Our aim, and the main technical contribution of this section is to prove that every k-tree914

is strongly realizable. We now present, in Lemma 36 and Lemma 39, two constructions that915

preserve f-realizability. A proof that the complete fixing of every k-tree can be obtained by916

these constructions is contained in the next subsection.917

I Lemma 36. Let 1 ≤ l ≤ k + 1. Let (P, Y ) be the complete vertex Y -fixing of a complete918

pattern S with l vertices and, if l ≤ k − 1, freely add to P an additional fixing face [S, Y ′]919

(and its subfaces) for some Y ′ ⊆ Y of size k − l.920

If each complete pattern with l− 1 vertices is strongly realizable, then (P, Y ) is f-realizable.921

Proof. The case l = 1 follows directly from Lemma 34 with the choice d′ = d+ 1 and we922

henceforth assume l > 1.923

Fix an arbitrary d. We need to choose d′ large enough so that the applications of the924

assumptions or Lemma 34, which will be used in the proof, do not decrease the quality of925

our assignments below d. Specifically, we first choose d′′ so that d′′ ≥ d+ 2 and, in case that926

l = k + 1, also d′′ ≥ z(Q,Z)(d+ 1) for each complete fixing (Q, Z) of a complete pattern with927

2 vertices; and then choose d′ so that d′ ≥ z(Q,Z)(d′′) for each complete fixing (Q, Z) of a928
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Figure 4 Case k = 3, l = 2 in the proof of Lemma 36.

complete pattern with l − 1 vertices (we will actually only use (Q, Z) equal to (P, Y ) take929

away one inner vertex).930

Denote S = {s1, . . . , sl} the set of inner vertices of (P, Y ), Ci (where i ∈ [l]) the set931

of fixing vertices coming from the vertex-fixing faces [{si}, . . . ], and C0 the set of fixing932

vertices coming from the fixing face [S, Y ′] (which is empty if l ≥ k), see Figure 4. Let933

C = C0 ∪ C1 ∪ · · · ∪ Cl. Finally, let φ : Y → A be an evaluation of quality d′.934

We consider the set T of restrictions of quality-d realizations of P to the set C. Note that935

this set is a subuniverse of the product of the corresponding Ax’s by Lemma 33.936

T = {β|C : β satisfies P with quality d} ≤
∏
c∈C

Av(c)937

We need to prove that the tuple a defined by a(c) = φ(v(c)) for all c ∈ C is in T . By the938

Baker-Pixley Theorem (Theorem 4 when proving Theorem 7 and Theorem 9 when proving939

Theorem 11) it is enough to show that for any (k + 1)-element set of coordinates D, the940

relation T contains a tuple b that agrees with a on this set. This is now our aim.941

Denote Di = Ci ∩D and assume that there exists i ≥ 1 such that |D0 ∪Di| ≤ k − l + 1.942

In this case we find a suitable tuple b in three steps as follows. First, by the choice of d′,943

we can extend φ to an assignment γ : P \ {si} → A that satisfies every k-element subset944

of P \ {si} with quality d′′, and set β(p) = γ(p) for each p ∈ P \ ({si} ∪ C0 ∪ Ci). Second,945

set β(p) = φ(v(p)) for each p ∈ D0 ∪ Di, let F = (S \ {si}) ∪ D0 ∪ Di, and note that F946

has size at most (l − 1) + (k − l + 1) = k and that β satisfies F with quality d′′. Therefore,947

by Lemma 34, β|F can be extended to F ∪ {si} so that β satisfies each at most k-element948

subset of F ∪ {si} with quality d′′ − 1 ≥ d+ 1. Third, for each face E of P where β is not949

yet fully defined we again use Lemma 34 and extend β|E∩dom(β) to E so that β satisfies E950

with quality d. By construction, β(c) = φ(v(c)) for every c ∈ D, and β satisfies every face of951

P with quality d: the fixing faces within P \ (C0 ∪ Ci) because of the first step, the face S952

because of the second step, and the remaining fixing faces (within S ∪ C0 ∪ Ci) because of953

the third step. Therefore b = β|C is from T and agrees with a on D.954

Let i ≥ 1 be such that |Di| is minimal. If l ≤ k, then simple arithmetic gives us that955



24 Sensitive instances of the Constraint Satisfaction Problem

P1 f

x
P2

Figure 5 Pattern Q in Lemma 37.

|D0 ∪Di| ≤ k− l+ 1 (so we are done in this case). Indeed, otherwise |Di| ≥ k− l+ 2− |D0|956

and |D| ≥ |D0|+ l|Di| ≥ |D0|+ l(k − l + 2 − |D0|). For the maximum size of D0, that is,957

|D0| = |C0| = k − l, the right hand side of the last inequality is equal to k + l, and if |D0|958

decreases it gets bigger. Then |D| ≥ k + l > k + 1, a contradiction.959

The remaining case is l = k + 1 (in particular, C0 = D0 = ∅) and |Di| > k− l+ 1 = 0 for960

each 1 ≤ i ≤ k+1. Then, in fact, Di = {di} for each i ≥ 1 (as |D| ≤ k+1). By the pigeonhole961

principle, there are i 6= j such that v(di) = v(dj). In this case we modify the three step962

procedure for finding b as follows. In the first step we define β only on P \ ({si, sj}∪Ci∪Cj),963

in the second step we set β(di) = β(dj) = φ(v(di)), define F = (S \ {si, sj}) ∪Di ∪Dj , and964

instead of Lemma 34 we use the choice of d′′ (coming from complete fixings of 2-element965

complete patterns) to extend β|F to F ∪ {si, sj}. J966

The next lemma provides the base case for the second construction. We remark that967

having a near unanimity term of arity 2k, when proving Theorem 7, or local near unanimity968

term operations of arity 2k, when proving Theorem 11, is sufficient for the proof.969

I Lemma 37. Let (P1, Y ) and (P2, Y ) be free fixing patterns with exactly one common vertex970

f , which is labeled by x 6∈ Y and which is completely fixed in both patterns. For i ∈ {1, 2} let971

P′i be the pattern obtained from Pi by removing the fixing vertices and all the vertices labeled972

x (and all the incident faces). Let Q be the union of P1 and P2.973

If (Pi, Y ), i = 1, 2 are f-realizable and P′i, i = 1, 2 are strongly realizable, then (Q, Y ) is974

f-realizable.975

Proof. Fix d, choose d′′ so that each complete fixing (S, Z) of P′1 or P′2, which we will use in976

the proof, satisfies d′′ ≥ z(S,Z)(d+ 1), and choose d′ ≥ z(Pi,Y )(d′′) for i = 1, 2.977

Let φ : Y → A be an evaluation of quality d′ and denote Y = {y1, . . . , yk} (where978

variables can possibly repeat). For each i ∈ {1, 2} and j ∈ {1, . . . , k} we construct a979

realization αji : Q→ A of Q of quality d. The sought after quality-d extension α of φ will be980

obtained by applying a 2k-ary (local) near unanimity operation to these realizations. In order981

to construct αji we first extend φ to a realization β of Pi of quality d′′ and define αji (p) = β(p)982

for each p ∈ dom(β) = Pi. Next, we extend the evaluation ρ : {x} ∪ Y \ {yj} → A, defined983

by ρ(x) = β(f) and ρ(y) = φ(y) else, to a quality-(d + 1) realization γ of the complete984

({x} ∪ Y \ {yj})-fixing of P′3−i and define αji (c) = γ(c) for each c ∈ dom(γ) (noting that ρ985

has quality d′′ since β does and f is completely fixed in Pi). Finally, for each face F of Q986

where αji is not yet fully defined (this concerns fixing vertices of P3−i labeled yj) we use987

Lemma 34 and extend αji so that it satisfies F with quality d. Now αji satisfies all the faces988

of Q with quality d and agrees with φ on all of the fixing variables, except those from P3−i989

labeled yj . It follows that applying a 2k-ary term operation to the αji that satisfies the near990

unanimity condition for the set of components of the αji gives an assignment of quality d (by991

Lemma 33) that extends φ, as required. J992

I Corollary 38. Let (P, Y ) be a fixing pattern with two vertices f1 6= f2 both labeled x and993

let n be a positive integer. Let (Q, Y ) be the fixing pattern obtained from the disjoint union994
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of n copies of P by identifying, for each i ∈ {1, . . . , n− 1}, the vertex f2 in the i-th copy with995

the vertex f1 in the (i+ 1)-st copy. Let P′ be the pattern obtained from P by removing the996

fixing vertices and all the vertices labeled x.997

If (P, Y ) is f-realizable and P′ is strongly realizable, then (Q, Y ) is f-realizable.998

f1

x

P f ′1/f2

x

P f ′′1 /f
′
2

x

P f ′′2

x

Figure 6 Pattern Q in Corollary 38.

Proof. The proof follows by induction from Lemma 37, noting that in each step if we remove999

vertices labeled x and fixing vertices from Q, we get a pattern which is a disjoint union of1000

strongly realizable patterns and is thus strongly realizable. J1001

The following lemma provides the second construction. The proof uses Corollary 381002

(which requires a near unanimity term of arity 2k or local near unanimity term operations of1003

arity 2k) but the rest of the reasoning is based on the loop lemma stated in Theorem 26,1004

for which a near unanimity term (or local near unanimity term operations) of any arity is1005

sufficient.1006

I Lemma 39. Let (P1, Y ) and (P2, Y ) be fixing patterns with a common inner face E and1007

no other common vertices, such that both P1 and P2 are k-trees. For i = 1, 2 let fi be a1008

completely fixed inner vertex of Pi with label x such that E ∪ {fi} is a face of Pi. Let Q be1009

the pattern obtained from the union of P1 and P2 by identifying vertices f1 and f2, and let1010

Q′ be the pattern obtained from Q (or P1 ∪ P2) by removing the fixing vertices and all the1011

vertices labeled x.1012

If (P1 ∪ P2, Y ) is f-realizable and Q′ is strongly realizable, then (Q, Y ) is f-realizable.1013

Proof. Let r > 2 be such that, in the case of proving Theorem 7, V has an r-ary near1014

unanimity term, and in the case of proving Theorem 11, A has local near unanimity term1015

operations of arity r (so r = k + 2 works). Let (Qr−1, Y ) be the fixing pattern obtained by1016

taking the disjoint union of r − 1 copies of P1 ∪ P2 and identifying the vertex f2 in the i-th1017

f1

x

f2

x

P1

P2

Figure 7 Patterns P1 ∪ P2 and Q in Lemma 39
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copy with the vertex f1 in the (i + 1)-first copy, for each i ∈ {1, . . . , r − 1}. The pattern1018

(Qr−1, Y ) is f-realizable by Corollary 38.1019

Fix d, choose d′′ using Lemma 34 so that, for both i ∈ {1, 2}, every quality-d′′ assignment1020

α : E ∪ {fi} → A extends to a quality-d realization of Pi, and choose d′ ≥ z(Qr−1,Y )(d′′ + 1).1021

Let φ : Y → A be an evaluation of quality d′. Denote by B the set of all elements of1022

a ∈ Ax such that the evaluation x 7→ a has quality d′′ + 1, denote by T the set of all the1023

quality-d realizations β of P1 ∪ P2 such that both {f1} and {f2} have quality d′′ + 1 and1024

both E ∪ {f1} and E ∪ {f2} have quality d′′, and denote by S ⊆ T the set of those β ∈ T1025

that extend φ. By a similar argument to that of Lemma 33, both T and S are subuniverses1026

of
∏
p∈P1∪P2

Av(p). Using the near unanimity term of arity r (or local near unanimity term1027

operations of arity r) S clearly locally r-absorbs T . The plan is to apply Theorem 28 to1028

the binary relation projf1,f2 S ⊆ B × B. If this binary relation contains a loop, then the1029

corresponding α ∈ S satisfies α(f1) = α(f2) and, therefore, we actually obtain a realization1030

of Q of quality d, as required.1031

It remains to verify the assumptions of Theorem 28. By the choice of d′, the pattern1032

Qr−1 has a quality-(d′′ + 1) realization that extends φ. The images of copies of vertices f11033

and f2 in such a realization yield a directed walk in projf1,f2(S) of length r − 1. Next, since1034

S locally r-absorbs T , then projf1,f2(S) locally r-absorbs projf1,f2(T ), so it is enough to1035

verify that the latter relation contains =B and projf1,f2(S)−1. For the first case, pick b ∈ B1036

and recall that the assignment f1 7→ b has quality d′′ + 1 by the definition of B. We extend1037

this assignment (using Lemma 34) to a quality d′′-assignment α : E ∪ {f1} → A, define1038

α(f2) = α(f1), and extend α to a quality-d realization of P1 ∪ P2. The obtained assignment1039

witnesses (b, b) ∈ projf1,f2(T ). Finally, to show that projf1,f2(T ) contains projf1,f2(S)−1,1040

consider any (a, b) ∈ projf1,f2(S)−1. By the definition of S, the pattern P1 ∪ P2 has a1041

realization α such that α(1) = b, α(2) = a, and both E ∪ {f1} and E ∪ {f2} have quality1042

d′′. We flip the values α(f1) and α(f2), restrict α to E ∪ {f1, f2} and extend this assignment1043

using the choice of d′′ to a realization of P1 ∪ P2 of quality d, giving us (a, b) ∈ projf1,f2(T )1044

and concluding the proof. J1045

D.3 Assembly1046

Lemma 36 and Lemma 39 enable us to prove that every k-tree is strongly realizable. We1047

split the inductive proof of this fact into two lemmata.1048

I Lemma 40. Let 1 ≤ l ≤ k and assume that every complete pattern with l vertices is1049

strongly realizable. Then every l-tree is strongly realizable.1050

Proof. It is enough to show that every complete l-tree is strongly realizable. However, for1051

an inductive proof of this claim, it will be convenient to use more general l-trees, those1052

that can be obtained from the empty pattern in n steps by taking the union of the already1053

constructed pattern S with a complete pattern C on l′ ≤ l vertices such that S ∩ C (where1054

0 ≤ |S ∩ C| < l′) is a face in both patterns (with the same labelling in both patterns). The1055

induction is primarily on n and secondarily on |S ∩ C|. For n = 1 the claim follows from the1056

assumption of the lemma. If S ∩ C = ∅, then S ∪ C is a disjoint union and the claim follows1057

by the inductive assumption and the assumption of the lemma.1058

Otherwise, take a fresh set Y of k-variables and let (Q, Y ) be a complete Y -fixing of1059

S∪C. Pick a vertex in S ∩C, say vertex f1 labeled x, let C′ be the pattern obtained from C1060

by renaming vertex f1 to a fresh vertex f2, let (P1, Y ) and (P2, Y ) be complete Y -fixings1061

of S and C′, respectively, and let E = (S ∩ C) \ {f1}. Note that this notation is consistent1062

with the statement of Lemma 39: Q can be obtained from P1 ∪ P2 by identifying vertices f11063
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and f2. To conclude the proof, we observe that the assumptions of Lemma 39 are satisfied.1064

Indeed, (P1 ∪ P2, Y ) is f-realizable by the inductive assumption (since it is a complete fixing1065

of S ∪ C′ for which |S ∩ C ′| < |S ∩ C|) and Q′ is strongly realizable since it is a subpattern1066

of S ∪ C′. J1067

I Lemma 41. Let 1 < l ≤ k + 1 and assume that every (l − 1)-tree is strongly realizable.1068

Then every complete pattern with l vertices is strongly realizable.1069

Proof. We start with a complete vertex Y -fixing of a complete pattern with l vertices,1070

which is f-realizable by Lemma 36, and add fixing faces one by one while preserving the1071

f-realizability.1072

So, let S be an f -realizable Y -fixing of a complete pattern with l vertices and let [E, Y ′]1073

be such that E = {e1, . . . , el′} is an inner face of S and Y ′ ⊆ Y is a (k − |E|)-element1074

set of variables. Our aim is to show that S plus the fixing face [E, Y ′] is f-realizable. Let1075

(C, Y ) be the complete vertex Y -fixing of a complete pattern with the set of inner vertices1076

G = {g1, . . . , gl′} (where gi’s are fresh vertices) labeled according to E (i.e., v(gi) = v(ei)1077

for each i ∈ [l′]) with an additional fixing face [G, Y ′]. By Lemma 36, this fixing pattern is1078

realizable. Let (Ci, Y ), i ∈ {0, . . . , l′} be the fixing pattern obtained by renaming the vertices1079

g1, . . . , gi to e1, . . . , ei, respectively. The aim, reformulated, is to show that (S ∪ Ci, Y ) is1080

f-realizable for i = l′. We prove this claim by induction on i.1081

For i = 0 the union S ∪ Ci is disjoint, therefore the claim follows from the f-realizability1082

of S and C0 = C. For the induction step from i to i+ 1 we apply Lemma 39 with P1 = S,1083

P2 = Ci, f1 = ei+1, and f2 = gi+1. Note that (P1 ∪ P2, Y ) is f-realizable by the induction1084

hypothesis and Q′ is strongly realizable since it is an (l − 1)-tree, so we can conclude that1085

(Q, Y ) = (S ∪ Ci+1, Y ) is f-realizable, finishing the proof. J1086

The following corollary is the core technical contribution of this section. Its proof follows1087

by induction from the previous two lemmata.1088

I Corollary 42. Every k-tree is strongly realizable.1089

Armed with Corollary 42, we are ready to execute the idea outlined in the beginning of this1090

section. For the purpose of the following theorem, we call an instance I = (V, {Ax | x ∈ V }, C)1091

a weak k-instance if it satisfies the running assumption, that is, C = {(S,RS) | S ⊆ V, |S| ≤ k}1092

and, for any S′ ⊆ S such that |S| ≤ k, the projection of RS onto S′ is contained in RS′ .1093

I Theorem 43. Let k ≥ 2 and n ≥ 0 be integers. Then there exists d = z(n, k) such that1094

for any variety V with a (k + 2)-ary near unanimity term, or any idempotent algebra A1095

with local near unanimity term operations of arity k + 2, any weak k-instance I of CSP(V)1096

(or CSP(A)) with at most n variables, and any at most k-element set of variables Y , every1097

evaluation φ : Y → A of quality d extends to a solution of I.1098

Proof. We prove the claim by induction on n. If n ≤ 1, then the claim trivially holds with1099

d = 1. Otherwise, we denote d′ = z(n− 1, k) and pick a d greater than or equal to z(T,Y )(d′)1100

for every complete Y -fixing (T, Y ) of a complete k-tree of depth d′.1101

Consider an instance I of CSP(V) (or CSP(A)) and an evaluation φ : Y → A of quality
d. We define a new instance I ′ = (V ′, {Ax | x ∈ V ′}, {(S,R′S) | S ⊆ V, |S| ≤ k}) by setting
V ′ = V \ Y and

R′S = {ρ|S | ρ : Y ∪ S → A is a partial solution of I such that ρ|Y = φ}

Clearly, I ′ is a weak k-instance. We have chosen d so that, in the instance I, the partial1102

evaluation φ extends to a realization of the complete Y -fixing of a complete k-tree of depth1103
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d′ (the base can be chosen arbitrarily for the argument). This realization witnesses that,1104

in the instance I ′, there exists an evaluation of quality d′. By the choice of d′, any such1105

evaluation extends to a solution θ of I ′. Now φ∪ θ is a solution of I, finishing the proof. J1106

To conclude, we state the parts of Theorem 7 and Theorem 11 that we set out to prove1107

in this section as the following corollary. It directly follows from Lemma 31 and the previous1108

theorem.1109

I Corollary 44. 1. If V is a variety that has a (k + 2)-ary near unanimity term then every1110

(k, k + 1)-instance of the CSP over V is sensitive.1111

2. If A is an idempotent algebra that has local near unanimity term operations of arity k+ 21112

then every (k, k + 1)-instance of CSP(A) is sensitive.1113
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