
Solving CSPs using weak local consistency ∗

Marcin Kozik

Theoretical Computer Science Department
The Faculty of Mathematics and Computer Science

Jagiellonian University

June 11, 2018

Abstract

The characterization of all the CSPs solvable by local consistency checking (lcc CSPs
for short), proposed by Feder and Vardi [SICOMP’98], was confirmed in [Bulatov’09] and
independently in [FOCS’09, JACM’14]. Later, a collapse of the hierarchy of local consistency
notions [JLC’14] was achieved by showing that (2,3) minimality solves all the lcc CSPs.

In this paper we show that a weaker consistency notion, jpq consistency, is sufficient to
solve these problems. Our notion is strictly weaker than (2,3) consistent, (2,3) minimality,
path consistency and Singleton Arc Consistency (SAC). This last fact allows us to answers the
question posed in [JLC’13] and, as known algorithms work faster for SAC then for the other
notions, implies that lcc CSPs can be solved more efficiently.

The definition of jpq consistency is closely related to consistency obtained from rounding
an SDP relaxation of a CSP problem. In fact the main result of this paper is necessary in the
proof showing that CSPs with a near unanimity polymorphisms admit robust approximation
algorithms with polynomial loss [SODA’17]. Finally the jpq consistency notion implies new
algebraic condition characterizing the algebras of lcc CSPs i.e. the algebras in congruence meet
semi-distributive varieties. The new characterization aligns nicely with one of the tractable
cases of Promise CSPs [SODA’18].

1 Introduction

Algorithms verifying various notions of local consistency have long history in computer science.
The usual objective of such an algorithm is to recognize, at a low computational cost, instances
which are unsolvable for “local” reasons. Local consistency checking often serves as one of the
first stages of an algorithm and allows to quickly disregard a fraction of inputs.

Local consistency checking algorithms play a specially important role in the context of
Constraint Satisfaction Problem. An instance of the Constraint Satisfaction Problem consists of
variables and constraints. In the decision version of CSP the question is whether the variables
can be evaluated in such a way that all the constraints, often described as a relation constraining
a sequence of variables, are satisfied.

In a seminal paper [23] Feder and Vardi proposed to parametrize the problem by restricting
the constraining relations allowed in instances. More formally, for every finite relational structure

∗Research partially supported by National Science Center under grant UMO-2014/13/B/ST6/01812. Preliminary version
of this paper (proving a weaker result) appeared in LICS 2016.

1

A (called in this context a template) the CSP parametrized by A, CSP(A), is the CSP restricted to
instances with all the constraint relations taken from A. Clearly, for any A, the problem CSP(A)
is in NP and it is quite easy to construct relational structures which define NP-complete CSPs
or CSPs solvable in polynomial time. One of the main problems in the area, the famous the
CSP Dichotomy Conjecture [23] postulates that every A defines CSP(A) which is NP-complete or
solvable in a polynomial time. Two recent, independent results of Bulatov [14] and Zhuk [31]
confirm this conjecture.

The class of problems which can be expressed as a CSP(A) is very rich; it is easy to construct
relational structure A such that CSP(A) is 2-colorability of graphs, 3-SAT, 3-Horn-SAT, or a
problem of solving systems of linear equations in Z2. The last problem on this list is a canonical
example of a CSP with an ability to count. Feder and Vardi [23] conjectured that all the CSPs
which do not have the ability to count are solvable by local consistency checking i.e. that some
form of local consistency is able to recognize all the instances with no solutions. The algebraic
approach to CSP allowed to formalize [28] and eventually confirm this conjecture [1, 5, 13].

The proof [1, 5], however, require (k, l)-consistency (compare Definition 3.1 in [3]) with k, l
dependent on the maximal arity of relations in the template. The consistency was substituted by
a weaker one in [3] showing that establishing so called (2, 3) minimality solves these CSPs. All
these results, as well as [13], even when restricted to templates with binary constraints require
some version of path consistency.

Path consistency is a local consistency notion which is costly to establish; it introduces
auxiliary constraints for each pair of variables which impacts the performance of the algorithm (it
runs in time which is cubic with respect to the number of variables [22]) and destroys the structure
of an instance. For example big and sparse instances are becoming, in essence, cliques and all
the structural advantage is lost. This paper shows that the same can be accomplished using a
significantly weaker consistency notion.

Arc consistency is another, perhaps the most recognized consistency notion. Arc consistency is
weaker than path consistency and can be computed efficiently. It does not, however, solve all the
lcc CSPs (as seen from e.g. classical Schaefer’s result [29]). A next, well established, consistency
notion is Singleton Arc Consistency (SAC). It is easier to verify than path consistency and the
verification do not distort the structure of the instance. In [17] authors discuss applicability of
SAC to lcc CSPs and ask if every such CSP is solvable by SAC. The main result of this paper
answers the question as the jpq consistency is weaker than SAC.

It isn’t always the case that the consistency of an instance is verified by a direct application
of an algorithm. In case of robust algorithms providing approximation for CSPs (compare
e.g. [25, 19, 4]) the consistency is obtained by rounding a solution to an SDP relaxation of a
CSP instance. Only specific and usually quite weak consistency notions can be provided by
such rounding. In particular the jpq consistency notion is the only notion that we were able to
provide in order to show that all the templates with near unanimity polymorphisms have robust
approximation algorithms with polynomial loss [21].

On the algebraic side of the connection the lcc CSPs correspond to algebras generating
varieties with meet semi-distributive congruences (SD(∧) algebras for short). Using the main
result of the paper we are able to immediately reprove some recent term condition [26] for SD(∧)
algebras. Moreover we are able to provide new, equivalent term conditions which align nicely
with a tractability class for a particular family of Promise CSPs [12].

The paper is organized as follows. In the next section we introduce some background, define
jpq consistency and state the main result. Section 3 contain a comparison of pertinent consistency
notions. The algebraic consequences are proved in Section 4. Finally the proof of the main
theorem starts in Section 5 and splits into two cases analyzed in Sections 6 and 7. The last section
contains acknowledgments.

2

2 The main result

The computational problem CSP(A) is defined for each finite relational structure A called, in this
context, a template. An instance of CSP over template A consists of a set of variables and a set
of constraints which are pairs of the form ((x1, . . . , xn),R) where each xi is a variable and R is
an n-ary relation in A. A solution of such an instance is a function f sending variables to the
universe of A (usually denoted by A) in such a way that for every constraint ((x1, . . . , xn),R) the
tuple (f (x1), . . . , f (xn)) ∈ R. Every such an instance can be equivalently presented as a relational
structure in the language of the template; in this presentation solvable instances correspond to
relational structures with homomorphisms to A.

Let I and J be CSP instances and ϕ be a function mapping variables of I to variables of J
and constraints of I to constraints of J ; if every constraint ((x1, . . . , xn),R) in I is mapped by ϕ
to a constraint of J of the form ((ϕ(x1), . . . , ϕ(xn)),R), then ϕ is the instance homomorphism from I
to J . Instance homomorphism from I to J can be equivalently defined as a homomorphism
between relational structures which I and J essentially are.

All of the local consistency notions can be expressed in terms of instance homomorphisms.
More precisely a local consistency notion can be defines by family of instances (usually given
by a particular structural condition e.g. a bound on the tree-width). Checking consistency
of an instance I is equivalent to verifying if all the instances from this family with instance
homomorphisms to I have solutions (compare e.g. [15]). The notion of jpq consistency will be
defined in this way as well.

A standard notion of the adjacency multigraph of an instance allows us to define structural
properties of instances. The vertex set of the adjacency multigraph of an instance consists of all the
variables and all the constraints and one edge between a variable vertex and a constraint vertex
is introduced for each time the variable appears in the constraint (in particular the multigraph
is bipartite). An instance is a tree (forest) instance if it’s adjacency multigraph is a tree (forest)
i.e. has no multiple edges and no cycles. It is easy to see that the arc consistency checking
algorithm accepts instance I if and only if every tree (equivalently forest) instance that maps
homomorphically to I has a solution.

2.1 Patterns in instances

Patterns are instances, with some added structure, which allow easier characterization of local
consistency conditions. The definition of a pattern in this paper is semantically very similar to
the definitions in [5, 8]. A pattern p in an instance I is an instance, together with:

• a homomorphism homp to from p to I;

• a set of variables startp (of the instance p) such that |homp(startp)| = 1;

• one more distinguished variable endp which is outside of the set startp.

Moreover we say that a pattern p is from x to y is homp(startp) = x and homp(endp) = y.
A pattern p is a tree pattern if it is defined by a tree instance, and the variables in startp and

endp are leaves in the adjacency tree of p. A tree pattern p is a path pattern if startp is a one element
set and the adjacency graph of p is a path from startp to endp with possible hanging variable
vertices (note that if all the constraints in a path pattern are binary there is no hanging variables
i.e. the adjacency graph of a path pattern is a path). The following graph depicts the structure of
a path pattern (solid vertices correspond to constraints):

3

startp endp

Let p, q be patterns in the same instance. If homp(endp) = homq(startq) we define a pattern
p + q in the following way:

1. p + q includes q and endp+q is equal to endq;

2. for each v in startq we introduce (into p + q) a fresh copy of p and

• identify v with endp of this fresh copy;

• add all the vertices of startp to startp+q;

• define homp+q on the new vertices according to homp.

It is clear that pattern addition is associative i.e. p + (q + r) = (p + q) + r whenever the condition
on starts and ends of p, q, r is satisfied. If p, q are path patterns then so is p + q, moreover for a
path pattern p we denote by −p the same pattern, but with the roles of startp and endp exchanged.
For path patterns p and q, we put p − q to be p + (−q) and occasionally write kp instead of
p + p + · · · + p (this is well defined for tree patterns as well).

2.2 Propagation via patterns

Let p be a pattern; the set B + p (the propagation of B via p) consists of all the values endp takes in the
solutions of p which send every variable in startp into B. Note that (B + p) + q = B + (p + q) (where
in the first case there are two propagations, and in the second one propagation, but with the sum
of patterns).

2.3 The jpq consistency and the main theorem

One of the most basic and well established (compare e.g. [20]) consistency notions is called arc
consistency (sometimes generalized arc consistency to account for the presence of constraints of arity
greater than two).

Definition 2.1 (Arc consistency). The instanceI is arc consistent if for any constraints ((x1, . . . , xn),R)
and ((y1, . . . , ym),S) such that xi = y j we have proji(R) = proj j(S).

We say that the instance I is arc consistency with sets {Ax} (where x ranges over variables of I),
when I is arc-consistent and the unique set the arc-consistency assigns to a variable x is Ax.

The notion of jpq consistency is strictly stronger then arc-consistency:

Definition 2.2. Let I be an arc consistent instance with sets {Ax}. The instance I is jpq consistent if for
any variable x, any a ∈ Ax and any path patterns p, q both starting and ending at x there exists j such that
a ∈ {a} + j(p + q) + p.

An algorithm, checking a local consistency notion, verifies whether an instance given on input
contains a subinstance which is consistent. A subinstance has the same variables and constraints
as the original instance; the only difference is that the constraining relations of a subinstance
can be smaller (in particular if a subinstance has a solution so does the instance). The algorithm
usually proceeds by “trimming” the instance (removing, from constraining relations, tuples

4

which falsify the consistency) until the condition is satisfied or an empty instance is produced. In
Section 3 we take a closer look at various consistency notions and the algorithms that produce
corresponding consistent instances..

By its nature the local consistency checking algorithms do not produce false-negatives.
We say that local consistency solves CSP when the positive answers are also correct i.e. each
consistent instance has a solution. The CSP problems solvable by local consistency checking
were characterized in [13, 1, 5], but each time the consistency notions were rather strong (see
discussion in Section 3). The main result of this paper states that establishing jpq consistency is
sufficient.

Theorem 2.3. Let A be a relational structure defining CSP(A) solvable by local consistency checking.
Then jpq consistency solves CSP(A).

3 Comparison of (selected) local consistency notions

There exists an extensive literature on various local consistency notions used in CSP (compare
e.g. [22, 11, 17]). In this section we present only these notions which are directly pertinent to our
approach. DATALOG (with a goal predicate) and its restrictions offer a natural way of defining
some local consistency notions.

As discussed in previous section an instance of CSP can be viewed as a relational structure in
the signature of the template. A DATALOG program derives facts about this relational structure
using a set of rules (which are fixed for a fixed template). The rules are defined using relations of
the template called extensional database or EDBs enhanced by a number of auxiliary relations called
intensional database or IDBs. Each rule consists of a head which is a single IDB on an appropriate
number of variables and the body which is a sequence on IDBs and EDBs. The execution of the
program updates the head IDB whenever the body of the rule is satisfied. The computation ends
when no relation can be updated, or when the goal predicate is reached.

Example. The following DATALOG program operates on digraphs. The edge relation of a
digraph (denoted by E) is the single binary EDB in the program. The program uses two IDBs:
ODD and GOAL (the goal predicate) and verifies whether the digraph has a directed cycle of
odd length.

ODD(x, y) D E(x, y)
ODD(x, v) D E(x, y) ∧ E(y, z) ∧ODD(z, v)

GOAL D ODD(x, x)

The program computes the relation ODD and fires the GOAL predicate when a directed circle of
odd length is found.

3.1 Arc consistency

Arc consistency (introduced in Definition 2.1) is one of the most basic local consistency notions.
The algorithm verifying arc consistency is conceptually very simple. It starts with an instance I
and the family {Ax}where each Ax is initially equal to the full universe of the template. Whenever,
for some constraint ((x1, . . . , xn),R) in I and some i, we have proji(R) , Axi we restrict Axi to
proji(R) and update all the constraints involving xi by removing tuples sending xi to elements
outside the new Axi . This procedure terminates with a maximal (possibly empty) arc consistent
subinstance of I.

5

An equivalent definition of arc consistency uses DATALOG: if we require that, in the
DATALOG program, every IDB is a unary relation its expressive power reduces to verifying
exactly arc consistency (note that the goal predicate is fired whenever the instance is inconsistent).
Already Schaefer’s classification [29] shows that the arc consistency is not strong enough to solve
all the lcc CSPs. In fact all the CSPs solvable by arc consistency are characterized in [20].

Note that, for a fixed template, arc-consistency can be computed quite quickly i.e. in the time
linear with respect to the number of constrains. But, at the same time, a PTIME-complete CSP:
Horn-3SAT is solvable by arc consistency.

3.2 Notions solving all lcc CSPs

The conjecture of Feder and Vardi [23] characterizing CSPs solvable by local consistency checking
was first confirmed in [13, 1, 5] but the consistency notions used there were unnecessarily strong.
The paper of Barto [3] improved these results, by showing that providing (2, 3) minimality is
sufficient for all the CSPs in this class. One of the consequences of this fact was a collapse of
hierarchy of CSPs requiring potentially stronger consistency notions.

An algorithm verifying (2, 3) minimality uses the same principle as the arc consistency
algorithm in the previous section. The difference is that instead of restricting sets Ax we restrict
sets Axy for every pair of variables x, y and that we additionally require that each triple of
variables is constrained by some constraint.

For templates containing only binary relations all the notions discussed in this section
are equivalent and correspond to well-studied path consistency. Algorithms verifying this
consistency work in time cubic with respect to the number of variables [22]; moreover, since
the algorithm introduces set Axy for each pair of variables, sparse instances (which could be
otherwise analyzed) loose their structure and can become intractable in practice.

More importantly, in some cases, the strong consistency notions just cannot be provided.
In [21] instance is constructed by rounding a solution to an SDP relaxation of a CSP instance and
the rounding procedure does not produce any of the strong notions discussed in this section.

3.3 Singleton Arc Consistency (SAC)

The notion of singleton arc consistence was introduced in [22]. The simplest algorithm establishing
SAC is a modification of the arc consistency algorithm. As with the arc consistency we update
sets {Ax} (and the instance) by removing elements. In the arc consistency algorithm removing the
element was decided by verifying a single constraints, in SAC it is decided by a subroutine. The
subroutine takes x and a ∈ Ax and runs arc consistency on the instance with added constraint
“x = a”1. If the subroutine computes an empty instance a is removed from Ax and the instance is
updated.

It is easy to see that every path consistent (binary) instance is necessarily SAC, and that
every SAC instance is arc consistent. The reverse implications do not hold. SAC offers some
computational advantages over path consistency: it is possible to verify SAC in time bounded by
a constant times the number of constraints times the number of variables [10]. More importantly
SAC does not alter the structure of the instance and therefore runs efficiently on sparse instances
with many variables.

SAC has been studied in [17] where the authors ask whether it solves all lcc CSPs. As the
notion of jpq consistency is weaker than SAC the result of this paper answers this question in
affirmative.

1All the changes to the instance performed by the subroutine are disregarded.

6

3.4 Singleton Linear Arc Consistency (SLAC)

The Singleton Linear Arc Consistency is the notion studied in [27] which is the conference
predecessor of this paper. SLAC is defined in a way similar to Definition 2.2 but with only one
pattern, say p, and the condition a ∈ {a} + p.

The name of this notion is motivated by an algorithm which can be used to provide it: Linear
Arc Consistency (LAC) is the consistency that can be computed using a DATALOG program
similar to the one for arc consistency, but allowing only the rules with no more than one IDB
in the body. SLAC can be provided by an algorithm similar to the one described for SAC in
Section 3.3 but with the subroutine running LAC instead of arc consistency. The notion of LAC
originates in [11, 18] and has computational advantages over arc consistency, most importantly it
can be computed in NL.

3.5 The jpq consistency

The jpq consistency is the central notion of this paper. It is weaker than the consistencies from
Section 3.2, SAC or SLAC. The definition of jpq consistency originates in [21], where a CSP
instance is obtained from rounding a solution to an SDP relaxation of a CSP instance. We
were unable to (in [21]) to construct a rounding that would produce an instance satisfying any
of the consistency notions stronger than jpq consistency and thus the result of [21] requires
Theorem 2.3 (together with some technical facts from Section 7) in the proof of correctness.

The next section contains further applications of Theorem 2.3 and the notion of jpq consistency.
It reproves a recent result [26] introducing a new term condition for algebras corresponding to
lcc CSPs, and introduces new term conditions for the same class.

4 Algebraic consequences

All of the result [13, 1, 5] make heavy use of the tools available via the algebraic approach to CSP.
The same techniques will be employed in this paper, but we refrain from introducing them, and
instead refer a reader to the excellent survey [9] and to a classical text on universal algebra [16].
Due to the nature of this section it requires more algebraic background than the remainder of the
paper. As the results proved here are consequences of the main theorem of the paper and are of
algebraic flavor the section can be omitted with no impact on other sections.

At the heart of the classification results for lcc CSPs lies the fact that, for core relational tem-
plates, they correspond to algebras generating varieties with meet semi-distributive congruence
lattices – SD(∧) algebras for short. Vice versa, the development of consistency notions can be
used to obtain new information about the structure of these algebra.

In this section we apply jpq consistence to reprove one of the main results of [26] which follows
immediately (comp. Corollary 4.2) from Theorem 2.3. Moreover, in Corollary 4.3, we present a
new term condition characterizing finite SD(∧) algebras (or locally finite SD(∧) varieties). The
condition is interesting due to its similarity to one of the tools providing tractability of PCSPs
in [12]. We start the section with a technical lemma.

Lemma 4.1. Let A be an SD(∧) algebra, a, b ∈ A and R ⊆ {a, b}n be such that proji j(R) is a graph on
{a, b} with no sources, no sinks, and loop at a. The subalgebra ofAn generated by R contains a constant
tuple.

Proof. Let R′ denote the subalgebra ofAn generated by R. We will show that ((x, . . . , x),R′) is a
jpq instance and use Theorem 2.3 to conclude that it has a solution, which immediately implies
that R′ has a constant tuple.

7

The first step is to show that ((x, . . . , x),R) is a jpq instance. The arc consistency of the instance
is clear. In order to establish jpq consistency we investigate the digraphs defined by path patterns
in this instance. Let p be a pattern; if the instance of p has single constraint then the set of solutions
of p is essentially R, and its restriction to (homp(startp),homp(endp)) is proji j(R) for some i, j i.e.
a graph on {a, b} with no sources, no sinks and loop at a. If p has more than a one constraint
then restricting the set of solutions of p to (homp(startp),homp(endp)) we get a graph which is
obtained from a composition of the graphs defined by proji j(R). Such graphs have no sources, no
sinks and loops at a.

There are five graphs on {a, b} satisfying our assumptions and it is an easy exercise to verify
that in all the cases a ∈ {a} + (p + q) + p and b ∈ {b} + 2(p + q) + p and therefore ((x, . . . , x),R) is a jpq
instance.

Consider an instance with a single constraint ((x, . . . , x),R′). It is arc consistent: indeed the
projection of R′ to any coordinate is the subalgebra ofA generated by {a, b}. Let c be any element
of this subalgebra, clearly c = t(a, b) for some term t. Now for any patterns patterns p, q we have
a ∈ {a} + 2(p + q) + p and b ∈ {b} + 2(p + q) + p and applying (coordinatewise) the term t to the
solutions of these pattern we conclude that c = t(a, b) ∈ {t(a, b)} + 2(p + q) + p i.e ((x, . . . , x),R) is a
jpq consistent instance which concludes the proof. �

Corollary 4.2 (Theorem 3.2 of [26]). Every finite SD(∧) algebra has an idempotent term t satisfying

t(y, x, x, x) = t(x, y, x, x) = t(x, x, y, x) = t(x, x, x, y) = t(y, y, x, x) = t(y, x, y, x) = t(x, y, y, x).

Proof. LetA be a finite SD(∧) algebra; the idempotent reduct ofA is also SD(∧). Let F be the free
algebra on two generators in the variety generated by this idempotent reduct and letR ≤sub F7 be
generated by (y, x, x, x, y, y, x), (x, y, x, x, y, x, y), (x, x, y, x, x, y, y), (x, x, x, y, x, x, x). The generators
satisfy the assumptions of Lemma 4.1 which implies that R has a constant tuple. The term
generating this tuple is satisfying all the required identities. �

The next corollary defines a new term condition for SD(∧). We omit its proof as it is identical to
the proof of Corollary 4.2.

Corollary 4.3. LetA be an SD(∧) algebra. For any odd n there is an n-ary term t satisfying all the
identities (in x and y) of the form

t(x, x, y, x, y, . . . , x, x︸ ︷︷ ︸) = t(y, x, y, x, x, . . . , y, x︸ ︷︷ ︸)

when x and y appear on both sides, and the same variable has majority on the left and on the
right.

Clearly, each such term of arity at least five, characterizes the class of SD(∧) algebras. The
corollary can be extended to even arities (adding identities similar to these in Corollary 4.2) at
the price of complicating the definition.

5 Into the proof of Theorem 2.3

In order to prove the main results of the paper we follow the general structure of the proofs
in [1, 5, 3]. The notion of jpq consistency is weaker then the notions used there, and therefore we
are unable to simplify the paper by citing appropriate results from earlier papers. In particular
the reasoning presented is a stand alone proof of the bounded width conjecture of Feder and
Vardi [23] as stated in [28].

8

In order to prove Theorem 2.3 we perform a number of standard reductions found already
in [23]. First reduction allows us to assume that A is a core that is every endomorphism of A is a
bijection. Indeed it is easy to see that every finite relational structure maps homomorphically to a
core which can be found as its induced substructure. Moreover an instance of A is solvable if
and only if the appropriate instance for the core of A is solvable, and the consistency algorithms
report identical results on both.

The proof of Theorem 2.3 proceeds as follows. We start with an arbitrary template A solvable
by local consistency checking and without loss of generality, assume that A is a core. Using [28]
we conclude that adding constants to A (for each element of A we introduce a unary relation
defining this element) does not change the property of being solvable by local consistency
algorithm. The algebra associated to such an enriched A is idempotent (i.e. all its operations
satisfy t(x, . . . , x) = x) and therefore (by the hardness result of [28]) needs to be an SD(∧) algebra.

Take any instance over such a template; the local consistency checking algorithm reduces this
instance to a jpq consistent subinstance (or such an instance can be obtained in another way as in
e.g. [21]). The jpq subinstance is algebraically closed i.e. it inherits the algebraic structure as the
template. If every such instance has a solution then verifying jpq consistency solves CSP for A
enriched with constants and thus for the original A as well. This reasoning reduces Theorem 2.3
to Theorem 5.1 below.

Theorem 5.1. Let A be a relational structure such thatA is idempotent and SD(∧). Every jpq consistent
instance over A has a solution.

The proof of Theorem 5.1 hinges on a slightly non-standard definition: a subalgebra B ≤ C is
absorbing if there is an operation of C, say f : Cn

→ C, such that f (c1, . . . , cn) ∈ B if for at most one
i we have ci < B.

Proof of Theorem 5.1. We fix a template A and the associated algebraA which is idempotent and
SD(∧). Moreover we fix a jpq consistent instance I and sets {Ax} so that I is arc-consistent with
{Ax}. We know that each Ax is a subuniverse of A (we will denote them by Ax) and that the
constraining relations are subpowers ofA as well.

The general structure of the proof is identical to the one in [1, 5, 3] i.e.: if each Ax is a one-
element-algebra the arc-consistency ofI provides a solution; otherwise we produceA′x ≤ Ax (we
require that for at least one x the subalgebra is proper) so that restricting the instance I to
{A′x}’s (i.e. substituting each constraint ((x1, . . . , xn),R) with ((x1, . . . , xn),R ∩

∏
iA
′
xi

)) produces a
subinstance which is jpq consistent. Throughout the proof subinstance is denoted by I′.

As in [1, 5, 3] the reasoning splits into two cases depending on the algebraic structure ofAx’s:
either noAx has a proper absorbing subalgebra, or at least one does. The first case is tackled in
Section 6 and the second in Section 7. �

Before we are ready to launch into the proof we need to establish some basic combinatorial
properties of jpq consistent instances.

5.1 Properties of jpq consistent instances

This first corollary of the definition of the jpq instance appeared as property (P3) in [3].

Corollary 5.2. Let I be a jpq consistent instance, and p, q patterns starting and ending at x. If
A′ + p = A′′ and A′′ + q = A′ then A′ = A′′.

Proof. Assume, for a contradiction that the corollary fails. If there exists a ∈ A′ \ A′′, then by the
assumptions of the corollary a < {a} + j(p + q) + p for any j (as the set is a subset of A′′). This,

9

however, contradicts the definition of jpq consistency for I. The case of a ∈ A′′ \ A′ is exactly the
same. �

Which leads to the next corollary.

Corollary 5.3. Let the instance I be jpq consistent with the sets {Ax}, and p, q patterns starting and
ending at x. For all sufficiently large j and for every a ∈ Ax we have a ∈ {a} + j(p + q) + p.

Proof. Fix an arbitrary a ∈ Ax and consider the sequence of sets A0 = {a},A2i+1 = A2i + p and
A2i+2 = A2i+1 + q. If, for some i < j < k, we have Ai = Ak , A j we contradict Corollary 5.2 and
since A is finite the sequence of sets needs to be eventually constant.

We apply the definition of jpq instance to a and the pattern k(p + q) taken in place of both p
and q and conclude that the set at which the sequence stabilises contains a. This in turn implies
that for all sufficiently large j we have a ∈ {a} + j(p + q) + p. Now if j is large enough to work for
all a ∈ Ax we satisfy the claim. �

6 Reduction with no absorption

This section presents a construction of the subinstance in the case when none of Ax has an
absorbing subuniverse. Note that all the algebras appearing in this section belong to the variety
generated by A and therefore are SD(∧) algebras. However the algebraic statements are true
independently from the context of this variety and their presentation is greatly simplified by
the fact that a product of a finite family of finite SD(∧) algebras is an SD(∧) algebra (compare
e.g. [7, 24]).

In a product, say R ≤
∏

i∈I Bi the projections (e.g. projJR for some J ⊆ I) are defined
naturally and inherit the algebraic structure fromR. Moreover we let πi to define the congruence
identifying in R tuples with the same element on the i-th coordinate. Consider R ≤sub B × C
and the congruence π1 ∨ π2. It is clear that π1 ∨ π2 induces a congruence, say β, on B by putting
b β b′ if and only if there exists c, c′ such that (b, c) and (b′, c′) are related in π1 ∨ π2. We call such
β the left congruence of R and analogous congruence on C the right congruence of R.

We will often use the fact (which is a basic consequence of the definition of the absorption) that
ifR′ ER ≤ B×C and π1 ∨π2 is the full congruence onR, then π1 ∨π2 (this time the congruences
and their join are on R′) is the full congruence on R′. The following algebraic fact [2] is used to
define the instance in the case of no absorption.

Theorem 6.1 (Theorem III.6 [2]). Let R ≤sub B × C be an idempotent Taylor algebra. If π1 ∨ π2 is the
full congruence on R then

• R = B × C, or

• B has a proper absorbing subalgebra or

• C has a proper absorbing subalgebra.

Note that if Theorem 6.1 provides a proper absorbing subuniverse in B or in C we can restrict R
to pairs intersecting this subuniverse and reapply the theorem. After finitely many applications
we obtain B′ E B and C′ E C such that B × C ER and neither B′ nor C′ has a proper absorbing
subalgebra. The construction is possible since the relation of “being an absorbing subalgebra” is
transitive (which can be proved using a composition of terms).

10

6.1 Defining the subinstance

The beginning of this section bears the closest resemblance to the proof of [1, 5, 3]. Recall that we
assumed that none of theAx’s has a proper absorbing subuniverse.
Claim 6.2. Let p be a path-pattern from x to y and α a congruence onAy such that the quotient
Ay/α is simple. Let

R = {(s(startp), s(endp)/α) : s is a solution of p}.

Then R ≤sub Ax ×Ay/α and it is

1. either the full product,

2. or a graph of a function.

In the second case α′ defined by

a α′ a′ if and only if (a, b), (a′, b) ∈ R for some b

is a congruence onAx and solutions of p establish an isomorphism fromAx/α′ toAy/α.

Proof. Take p, α and R as in the statement of the claim. The fact that R is subdirect inAx ×Ay/α
follows from arc consistency of the instance. Consider the congruence π1 ∨ π2 on R. If it is the
full congruence then, as neitherAx norAy/α have proper absorbing subalgebras (ifAy/α had
one thenAy would have one as well), Theorem 6.1 implies that R is the full product.

In the second case π1 ∨ π2 is not the full congruence on R. Therefore the right congruence
defined by R is non-full and, as the algebra is simple, it has to be the identity congruence. This
implies that every a ∈ Ax has a unique b inAy/α such that (a, b) ∈ R. Let α′ be as in the statement
then R′ = {(s(startp)/α′, s(endp)/α) : s is a solution to p} is a graph of a bijection and it establishes
an isomorphism between the quotients. �

In order to define I′ we find a variable y such thatAy has more than one element and fix a
congruence αy so thatAy/αy is simple. Moreover we choose an arbitrary block of αy and denote
it byA′y. Let p be a path pattern in I which end at y. We say that a pattern is non-proper if, in
Claim 6.2, it falls into the scope of case 1; a pattern is proper if it falls into the scope of case 2.
Claim 6.3. Let p, q be proper path patterns which start at the same variable x. The congruences
and the isomorphisms established in Claim 6.2 by p and q are the same.

Proof. Let αp (αq) be the congruence given by Claim 6.2 for pattern p (pattern q respectively). If,
for every a ∈ Ax we have a ∈ a/αp + p − q the claim holds. Indeed we immediately conclude
that a + p and a + q are in the same αy block for any a and the classes of αp and αq as well as the
isomorphisms defined by p and q must coincide.

If, on the other hand, there is an element a such that a < a/αp + p − q then the last set is an
αq block not containing a. Therefore a < {a} + j(p − q + q − p) + p − q for all j; indeed the pattern
switches between αp block containing a and a block of αq not containing it. This contradicts the
definition of jpq consistency. �

Call a variable x of I proper if there exists a proper path pattern p from x to y. Denote by
αx the congruence α′ onAx and by ixy the isomorphism betweenAx/αx andAy/αy given by p
according to by Claim 6.2. LetA′x be a block of αx such that ixy(A′x) = A′y. By Claim 6.3 α′ and ixy
do not depend on the choice of the pattern p. For every variable x which is not a proper variable
putA′x = Ax.

Let I′ be a subinstance of I obtained by restricting every variable x of I toA′x (by restricting
all the constraining relations appropriately). The following technical claim is used to show the
consistency of I′.

11

Claim 6.4. Let x and z be proper variables and let p be a path-pattern from x to z;

1. either, for every a ∈ Ax, a/αx + p = Az, and for every a′ ∈ Az, a′/αz − p = Ax or

2. the pattern p establishes an isomorphism i fromAx/αx toAz/αz such that the ixy(a/αx) =
izy(i(a/αx)) for any a ∈ Ax, in particular i(A′x) = A′z.

Proof. Apply Claim 6.2 to p and αz and to −p and αx; if in both of the applications we are in case 1
then we proved the first case of the current claim.

Note that proving the second case for p is equivalent to proving it for −p, and thus without
loss of generality we assume that case 2 of Claim 6.2 holds for p and αz. Let q be any proper
pattern from z to y, and note that in this case p + q is a proper pattern from x to y. This means that
p + q defines the congruence αx and the isomorphism ixy (as they are independent on the choice
of a proper pattern). This means that p defines an isomorphism i and that ixy(a/αx) = izy(i(a/αx))
for any a ∈ Ax as required. �

Note that in the case where all of the constraints are binary, the last claim establishes arc
consistency for I′. In the general case we need to proceed more carefully.

6.2 The subinstance is arc consistent

In order to establish arc consistency, and eventually jpq consistency, of the instance I′ we require
two facts. The first one is from [5].

Proposition 6.5 (Lemma 5 of [5]). LetA1, . . . ,Ak be simple SD(∧) algebras with no proper absorbing
subuniverses. If R ≤sub

∏
iAi is such that πi ∨ π j = 1R then R =

∏
iAi.

One particular consequence of the fact is that, under the assumptions of Proposition 6.5, the
algebra

∏
iAi has no proper absorbing subalgebras. Indeed such a subalgebra, say R′ would

need to be subdirect, as none of theAi’s has an absorbing subuniverse. Moreover πi ∨ π j = 1R′
would hold by absorption and Proposition 6.5 implies that R′ =

∏
iAi. A proof of the following

proposition is postponed until Section 6.4.

Proposition 6.6. Let A be an SD(∧) algebra and α a congruence on A such that A/α has no proper
absorbing subuniverses. Then for every pair of congruences β and γ if α ∨ β = α ∨ γ = 1A then
α ∨ (β ∧ γ) = 1A.

Let (x,R) be an arbitrary constraint of I. Note that, by arc consistency of I, we have
R ≤sub

∏
iAx(i). We fix an arbitrary coordinate, without loss of generality coordinate 1, and will

show that
any a ∈ Ax(1) extends to a tuple in R ∩

∏
i

A′x(i).

Once this is proved, we’ve established arc consistency of I′.
Let i and j be indices such that both x(i) and x(j) are proper. Define pattern p by taking a copy

of the constraint (x,R) but making all the variables different, define homp in the natural way and
set the variable at i-th position to be the start and at j-th to be the end of p. Apply the Claim 6.4
to p; if it results in case 2 we call i and j equivalent. Note that, in this case, every tuple a ∈ R
has a(i) ∈ A′x(i) if and only if a(j) ∈ A′x(j). Applying, in the same way, Claim 6.4 to any pair of
coordinates with proper variables we define an equivalence on the coordinates of R (but only
these which correspond to proper variables in x).

Choose one index from each equivalence class of this equivalence (if x(1) is proper choose 1
from its equivalence class) and assume without loss of generality that these indices are 2, . . . , k (or

12

1, . . . , k if x(1) is proper). Let S = {(a1, a2/αx(2), . . . , ak/αx(k)) : (a1, . . . , ak) ∈ proj1...kR}. The next step
is to show that, in the algebra S, we have πi ∨ π j = 1S for all i , j. If both i, j > 1 then they
are from different equivalence classes, which means that the pattern defined as in the previous
paragraph is in case 1 of Claim 6.4. As every solution of this pattern induces a tuple in S we are
done. In order to confirm that π1 ∨ π j = 1S we consider two cases; either x(1) is proper and the
reasoning is the same as for the other i’s, or it is non-proper and the failure of π1 ∨ π j = 1S would
imply a proper pattern from x(1) via x(j). Note that the first consequence of these facts is that
proj2,...,k S is, by Proposition 6.5, the full product

∏k
i=2Ax(i)/αx(i).

Multiple applications of Proposition 6.6 (each time with π1 in place of α) show that π1 ∨∧
i≤2 πi = 1S. This means that S treated as a product Ax(1) and the

∏k
i=2Ax(i)/αx(i) satisfies the

assumption of Theorem 6.1. As neitherAx(1) nor
∏k

i=2Ax(i)/αx(i) have absorbing subuniverses (the
last one by the discussion after Proposition 6.5) Theorem 6.1 implies that S is indeed the full
product. Now the construction of S implies that every element in A′x(1) extends to a tuple in
R ∩

∏
iA
′

x(i) i.e. the instance I′ is arc consistent.

6.3 The subinstance is jpq consistent

The following proposition is, in essence Theorem 6 of [8], can be used to establish jpq consistency.

Proposition 6.7. LetA be an algebra andR, S ≤sub An such thatRES, and for every a ∈ A the constant
tuple (a, . . . , a) belongs to S. Then R contains at least one constant tuple.

The proof of jpq consistency of the instance I′ follows the same plan as the proof or arc-
consistency, but instead with a single constraint we start with patterns. Let x be any variable
and p′, q′ be patterns, from x to x, in instance I′. Let p, q be counterparts of these patterns in
I i.e. p and p′ are almost the same but p′ has restricted relations from I′ while p has relations
from I. Define pattern r = j(p + q) + p where j is given by Corollary 5.3. Let the set of variables
of r, excluding startr and endr, be denoted by V. Let R ≤sub A2

x ×
∏

v∈VAhomr(v) be the algebra
of all the solutions of this pattern. The subdirectness of R follows by arc consistency of I, and
Corollary 5.3 implies that, for every a ∈ Ax, we have (a, a) ∈ proj1,2R.

Our goal is to prove that, for any a ∈ A′y, there is a tuple in R ∩ (A2
y ×

∏
v∈VA

′

homr(v)) which
starts with (a, a). In order to obtain this we proceed almost exactly as in the previous section.
Let v and w be variables of r such that both homr(v) and homr(w) are proper. Let r′ be the path
pattern, obtained by dropping constraints from r, such that startr′ = v and endr′ = w. If, applying
the Claim 6.4 to this pattern, we are in case 2 then every solution to r, say s, has s(v) ∈ A′homr(v)
if and only if s(v) ∈ A′homr(w). This defines an equivalence on the set of variables v which have
proper homr(v).

Let W be a set of variables such that every equivalence class, that does not contain startr and
endr, has a single representative in W. Take a projection ofR to {1, 2} ∪W and let S be the algebra
obtained from this projections by quoting every coordinate v ∈W by αhomr(v).

Note that S ≤sub A2
x ×

∏
v∈WAhomr(v)/αhomr(v) and that, using reasoning identical as in the

previous section, we can show that πi ∨ π j = 1S as long as i , j and {i, j} , {1, 2}. This implies,
among other things, that projW(S) is the full product. Moreover we can apply Proposition 6.6
to show that π1 ∨

∧
i∈W πi = 1S and similarly for 2 in place of 1. As S/

∧
i∈W πi has no proper

absorbing subalgebras we can apply Proposition 6.6 once more to get (π1 ∧ π2) ∨
∧

i∈W πi = 1S.
Applying Theorem 6.1 to S (proj12 S on the left and the remaining coordinates on the right) by the
discussion after the theorem we get R such that R ×

∏
v∈WAhomr(v)/αhomr(v) is a subalgebra of S.

Note that R E proj1,2 S and, putting ∆ = {(a, a) : a ∈ Ay} we have ∆ ≤ proj1,2 S by construction.
That means that we can apply Proposition 6.7 to obtain a constant pair in R. But then

13

∅ , (R ∩ ∆) E (proj12(S) ∩ ∆) = ∆ and as Ay has no absorbing subuniverses we conclude
that R ∩ ∆ = ∆. This finishes a proof of the fact that the instance I′ is jpq consistent.

6.4 A proof of Proposition 6.6

In this section we prove Proposition 6.6. In order to proceed with the proof we require the
following theorem, which is a special case of the main result of [6].

Theorem 6.8. Let R ≤sub A2 be an idempotent Taylor algebra. If π1 ∨ π2 is the full congruence on R
then (a, a) ∈ A for some a.

and its easy consequence
Corollary 6.9. Let A,B be idempotent Taylor algebras and both R, S be subdirect in A × B. If
π1 ∨ π2 is the full congruence in R then R ∩ S , ∅.

Proof. Consider the algebra T = {(a, c) : ∃b (a, b) ∈ R ∧ (c, b) ∈ S}. The algebra T is subdirect in
A2 and π1 ∨ π2 is the full congruence on T: indeed if (a, b), (a′, b) ∈ R then, choosing c such that
(c, b) ∈ S, we have (a, c), (a′, c) ∈ T. This implies that the left congruence defined by T is not
smaller than the left congruence defined by R i.e. is full. Applying Theorem 6.8 to Twe get a
constant pair which implies that R ∩ S , ∅. �

The proof hinges on the following lemma.

Lemma 6.10. Let R ≤sub A × B be an idempotent SD(∧) algebra and let α be a congruence on R. There
is at most one α class which is subdirect inA × B.

Proof. First note that the subset of R/α consisting of α classes which are subdirect in A × B is
a subalgebra of R/α. Indeed let a ∈ A and take (R ∩ ({a} × B))/α — this is a subalgebra of R/α
consisting of α-classes containing a pair with a as first element. Intersecting these subalgebras
for all a ∈ A and for all b ∈ Bwe get a subalgebra of R/α consisting of all α-classes subdirect in
A × B.

We substituteRwith the union of the subdirect α-classes and restrict α to it. The assumptions
still hold but now every α class is subdirect. Assume, for a contradiction, thatR/α has more than
one element and letA′ be a block of left congruence of R and B′ be block of right congruence
of R such that R ∩ (A′ × B′) is linked. The goal is to find a non-full subalgebra of R/α (say
R′/α) so that R and R′ define the same left and right congruences. If we can accomplish it then
R′ ∩ (A′ ×B′) is linked and subdirect inA′ ×B′ and for (a, b) ∈ R \R′ the class (a, b)/α∩ (A′ ×B′)
is subdirect inA′ × B′. These subalgebras intersect empty which contradicts Corollary 6.9.

If R/α has a non-trivial absorbing subalgebra, say given by R′/α, then left and right
congruences defined by R and R′ are the same: if (a, b), (a′, b′) ∈ R′ and (a, b′) ∈ R and the
absorbing term is t then

a = t(a, . . . , a), t(b′, b, . . . , b), t(a′, a, . . . , a), t(a′, a′, a, . . . , a), . . . , t(a′, . . . , a′) = a′

is a sequence inR′ witnessing that (a, b) and (a′, b′) are in π1 ∨π2 inR′. The concludes the case of
absorption in R/α.

IfR/α has no non-trivial absorbing subuniverses we fix β a maximal congruence above α. Let
(a, b) ∈ R, define an algebra P ≤ B ×A

(b′, a′) ∈ P iff (a, b′), (a′, b′), (a′, b) ∈ R,

and put Q = {((a, b′)/β, (a′, b′)/β, (a′, b)/β) : (b′, a′) ∈ P}. Note that the tuple constantly equal
to (a, b)/β is in Q (indeed (b, a) ∈ P). Take any class of β; there exists b′ ∈ B such that

14

(a, b′) belongs to this class (respectively a′ ∈ A such that (a′, b) belongs to this class). Then
((a, b′)/β, (a, b′)/β, (a, b)/β) ∈ Q (and respectively ((a, b)/β, (a′, b)/β, (a′, b)/β)) which implies that
Q ≤sub (R/β)3 and that πi ∨ π j is the full congruence on Q for any 1 ≤ i , j ≤ 3. As R/β is simple
and has no absorption Proposition 6.5 implies that Q is the full product. This means that in
any β class there is a connection from a to b i.e. each β class defines left and right congruences
identical to those given by R. This is a contradiction in the case of no absorption and the lemma
is proved. �

Proof of Proposition 6.6. Let R be an algebra of triples {(a/α, a/β, a/γ) : a ∈ A}which is obviously
subdirect inA/α ×A/β ×A/γ. From the assumptions it follows that π1 ∨ π2 = π1 ∨ π3 = 1R and
in order to confirm the proposition we need to show that π1 ∨ (π2 ∧ π3) = 1R.

Now let R′ be minimal absorbing subuniverse of R. Clearly π1 ∨ π2 = π1 ∨ π3 is still a
full congruence in R′; moreover proj1(R′) = A/α since A/α has no absorbing subuniverses.
Therefore if we show that π1 ∨ (π2 ∧ π3) is the full congruence in R′ the same would holds in R
and the proposition will be proved.

Let us denote proj2(R′) byA2 and proj3(R′) byA3. Note that proj12(R′) = A/α ×A2; indeed
π1 ∨ π2 is the full congruence and neither A/α nor A2 have absorbing subuniverse (since R′

doesn’t) and thus Theorem 6.1 implies that proj12(R′) is full. Similarly, proj13(R′) = A/α ×A3.
If π1 ∨ (π2 ∧ π3) is not the full congruence on R′ it defines a non-trivial right congruence on

proj23(R′) (hereA/α is on the left and proj23(R′) is on the right). By the previous paragraph every
congruence block of this right congruence is subdirect in A2 ×A3 — this directly contradicts
Lemma 6.10 and therefore finishes the proof. �

7 Reduction in the presence of absorption

In this section we tackle the case in which at least oneAx has a non-trivial absorbing subuniverse.
The first step is to construct an arc consistent subinstance of I which is absorbing i.e. if
(x,R) is a constraint in I and (x,R′) is the corresponding constraint in the subinstance then
R′ E R. Additionally we require the subinstance to be minimal arc consistent with sets {A′x}
such that noA′x has a proper absorbing subuniverse. This is obtained by repeated applications
of Proposition 7.1, which is proved in the next section. In section 7.2 we prove that such a
subinstance is indeed jpq consistent.

7.1 Shrinking arc consistent subinstances of I

This section is fully devoted to a proof of Proposition 7.1. Once the proposition is proved we can
repeatedly apply it to I (choosingJ = I in the first step) each time taking the proper subinstance
of J provided by the proposition as the new J .

Proposition 7.1. Let I be a jpq instance, andJ be an absorbing subinstance of I which is arc consistent
with sets {Bx}. If one of Bx’s has a proper absorbing subuniverse, then there exists a proper absorbing and
arc consistent subinstance of J .

Let I,J be as in the statement of the proposition. The vast majority of the proof disregards I,
so all the patterns and propagations in this section are (unless explicitly stated otherwise) in J .
We begin, as in [8], by defining a preorder on pairs (x,B) satisfying B ≤ Bx and ∅ , B , Bx. We
put (x,B) v (x′,B′) if there is a tree pattern p satisfying homp(startp) = x, homp(endp) = x′ and
B + p = B′. Note that the relation v is transitive by the addition of tree patterns.

15

Fix B′ and x′ such that B′ is a non-trivial absorbing subuniverse of Bx′ provided by the
assumption of the proposition. Let R be set of elements in the preorder satisfying the following
properties:

• for every (y,B) ∈ R we have (x′,B′) v (y,B);

• for every (y,B), (y′,B′) ∈ R we have (y,B) v (y′,B′) and

• if (y,B) ∈ R and (y,B) v (y′,B′) then (y′,B′) ∈ R.

Such a set can be easily found by starting from (x′,B′) and following the relation “up” to a top
equivalence class of v. Note that, by arc consistency of instance J , if (y,B) ∈ R then B E By. We
call a variable of I proper if it appears in a pair in R, and postpone a proof of the following claim
until later.

Claim 7.2. For every proper x there is an algebra B such that:

• (x,B) ∈ R, and

• for every B′ if (x,B′) ∈ R then B ≤ B′.

For each proper variable x put B′x to be the unique smallest algebra provided by the previous
claim (denoted there by B) and for remaining x put B′x = Bx. LetK be the subinstance of J to
obtained by restricting to {B′x}. The instanceK is a proper subinstance of J by the choice of R,
and is absorbing since all the algebras B′x are. In order to finish a proof of Proposition 7.1 we will
prove that it is arc consistent with the sets {B′x}.

Take an arbitrary constraint ((x1, . . . , xn),R); our goal is to show thatR∩
∏n

i=1B
′
xi
≤sub

∏n
i=1B

′
xi

.
For simplicity of presentation we will show only that projn(R ∩

∏n
i=1B

′
xi

) = B′xn
(as the order of

coordinates does not alter the reasoning) and assume that x1 is proper (if none of the x1, . . . , xn−1
is proper the fact follows from arc consistency of J and if one is we permute the constraint). Let
k be the largest number such that,

projk
(

proj1,...,k(R) ∩
∏

i∈{1,...,k}

B′xi

)
= B′xk

.

Clearly k > 1 (as I is arc consistent) and if k is smaller than n we obtain a contradiction using the
following, initially empty, tree pattern p:

1. take the constraint ((y1, . . . , yn),R) (make all yi’s pairwise different, and note that xi’s don’t
need to be) add it to p and set

• homp((y1, . . . , yn),R) = ((x1, . . . , xn),R),

• homp(yi) = xi

• startp = {y1} and endp = xk+1

2. for i = 2, . . . , k consider xi

(a) if xi = x1 add yi to startp;

(b) if xi is proper and different than x1:

• take a fresh copy of tree pattern q witnessing (x1,B′x1
) v (xi,B′xi

),
• adjoin it to p identifying endq with yi (extend homp to new variables and constraints

in the natural way),
• add startq to startp.

16

(c) if xi isn’t proper do nothing;

Let B′ = B′x1
+ p; the algebra B′ , Bxk+1 as it would contradict the maximality of k. Therefore

(x1,B′x1
) v (xk+1,B′) but in this case, using Claim 7.2, we get B′xk+1

≤ B′ which contradicts the
maximality of k as well. This finishes, modulo a proof of Claim 7.2, the proof showing that the
instance I′ obtained by restricting to {B′x} is arc consistent.

The remaining part of this subsection contains a proof of Claim 7.2. Suppose, for a contradic-
tion, that the claim fails for a variable x and letM be the set of minimal under inclusion elements
of {B : (x,B) ∈ R}.

First we show that if B ∈ M and (x,C) ∈ R then either B∩C = ∅ or B ≤ C. Suppose otherwise
and let B′ = B ∩ C, we will show that (x,B′) ∈ R which contradicts the fact that B ∈ M. Indeed
let patterns p, q be such that B + p = C and C + q = B. Define a new pattern r by identifying the
ends of p and p + q; we have B + r = (B ∩ C) showing that (x,B) v (x,B ∩ C) i.e. (x,B ∩ C) ∈ R
which contradicts the minimality of B.

Now fix C such that:

1. (x,C) ∈ R,

2. there exists B ∈ M such that B ∩ C = ∅

3. C is maximal, under inclusion, among the algebras satisfying the two previous conditions.

Let B1, . . . ,Bn be the elements ofM which intersect empty with C. Fix tree patterns pi such that
Bi + pi = Bi+1 and patterns q, q′ : C + q = B1,Bn + q′ = C.

Let pattern p = q + p1 + · · · + pn + q′ and note that that C + p = C. Next we iteratively modify
the pattern p: take an element v ∈ startp let p′ be identical to p with the only exception that
start′p = startp \{v}. If C + p′ = C we substitute p for p′ and repeat the procedure. Note that, as
instance J is arc consistent, we will not remove all the elements from startp.

Fix any v ∈ startp and let E ≤ B2
x be the projection to (v, endp) of all the solutions to p which

send all the variable in startp \{v} to C. The following claim lists some basic properties of such an
algebra E.

Subclaim 1. The following hold:

1. proj2(E ∩ (C × Bx)) = C;

2. every Bi is a subset of proj2(E);

3. for every i and every a ∈ Bi there exists a′ ∈
⋃

jB j such that (a′, a) ∈ E.

Proof. For the first item of the claim note that the algebra proj2(E ∩ (C × Bx)) is equal to the set
C + p which is C.

For the second let p′ be identical to p with the only exception that startp′ = startp \{v}. The
algebra proj2(E) is equal to C + p′ and if it is Bx we are done. Otherwise (x,C + p′) ∈ R and the
same follows from the maximality of C (C + p′ ! C as otherwise we would remove v from startp
while refining p).

For the last item we fix i and proceed independently on the choice of a ∈ Bi. First we define p′

by letting, initially, p′ = p and:

• removing v from startp′ and setting endp′ = v;

• taking a fresh copy of q witnessing (x,C) v (x,Bi), adding it to p′ by identifying endq with
endp (which is no longer endp′), adding startq to startp′ and adjusting homp′ accordingly.

17

Now C + p′ is either Bx or (x,C + p′) ∈ R (it cannot be empty by the reasoning in the previous
paragraph) and in either case B j ⊆ C + p′ for some j. Let us define p′′ starting, as usual, with
p′′ = p and perform the following modifications:

• remove v from startp′′ ;

• take a fresh copy, say q, witnessing (x,C) v (x,B j), add it to p′′ by identifying endq with v,
add startq to startp′′ and adjust homp′′ accordingly.

We claim that C + p′′ is a superset of Bi. Indeed (C + p′′) ∩Bi , ∅ as C + p′ = B j and therefore
either C + p′′ = Bx or (x,C + p′′) ∈ R. In the first case obviously Bi ≤ C + p′′ and in the second it
follows from the minimality of Bi. But this means that every a ∈ Bi has a solution of p′′ mapping
endp′′ 7→ a; this solution maps v to an element of B j which can be chosen for a′. �

Now take pattern q to be identical to p but substitute the constraining relations from J with
their counterparts in I. More precisely let (y,R) be a constraint of p and (homp(y),R) a constraint
of J if the corresponding constraint of I has constraining relation S we have (y, S) in q (instead
of (y,R)). Now let F ≤ A2

x be similar to E, i.e. defined by projections on (v, endq) of the solutions
to q, but this time we place no restrictions on evaluations of startq \{v}.

Subclaim 2. The following hold:

1. F ≤sub A2
x;

2. for every a ∈ Ax we have (a, a) in F composed with itself sufficiently many times;

3. for any i and any b ∈ Bi there exists c ∈ C such that (c, b) is in F composed with itself
sufficiently many times.

Proof. Item 1. holds by the arc consistency of I. For item 2. let r be the path pattern in q which
connects v to endq. We have a ∈ {a} + j(r + r) + r for some j by the definition of jpq consistency.
Let a = a0 and choose ai ∈ ai−1 + r so that a2 j+1 = a. Arc consistency of I implies that the solutions
to r can be extended to solutions of q and thus (ai, ai+1) ∈ F for every i and item 2. is proved.

For item 3. fix i and b ∈ Bi. Let r be as before but we split it into two parts: r′ from v to
the endpi (i.e. the variable which, while constructing p, was endpi on the path from v to endp)
and r′′ from the endpi to endq. Let j be such that b ∈ {b} + j(r′′ + r′) + r′′ (by jpq consistency)
and c ∈ C such that b ∈ {c} + r′ (such a c exists by the definition of p). Let c = b0 and choose
bi ∈ bi−1 + r′ + r′′ such that b j+1 = b; now, using arc consistency of I, we finish the proof using the
reasoning identical to the one for item 2. �

First we argue that E E F. As all the absorptions can be witnessed by a single term, the
solutions to p absorb solutions to q. Moreover C EBx EAx and therefore the solutions to p with
elements of startp \{v} in C also absorb all the solutions of q. This implies that E E F. In order to
finish the proof we introduce a more shorthand notation: we write E(k) for E ◦ · · · ◦ E (where
there is k copies of E composed) and similarly for F.

Take an a ∈
⋃

iBi and, using Subclaim 1 item 3, find a′ ∈
⋃

iBi such that (a′, a) ∈ E. By
repeating this procedure we get a ∈

⋃
iBi such that (a, a) is included in E(k) for some k. By

Subclaim 2 item 3 we get a′ ∈ C such that (a′, a) ∈ F(l) for some l and using e.g. Subclaim 1 item 1.
we find a′′ ∈ C such that (a′′, a) ∈ F(kl).

Now we start with a0 = a′′ and use Subclaim 1 item 1. to find a1 ∈ C such that (a1, a0) ∈ E.
We repeat this procedure until some element repeats itself and then find a′′′ and m such that
(a′′′, a′′′) ∈ E(m) and (a′′′, a′′) ∈ F(kl(m−1)).

18

Finally we got (a, a), (a′′′, a′′′) ∈ E(klm) and (a′′′, a) ∈ F(klm). Let t be the term witnessing the
absorption E E F and thus the absorption E(klm) E F(klm) as well. Consider the sequence

a′′′ = t(a′′′, . . . , a′′′), t(a, a′′′, . . . , a′′), t(a, a, a′′′, . . . , a′′′), . . . , t(a, . . . , a, a′′′), t(a, . . . , a) = a.

Each pair of consecutive elements belongs to E(klm) and thus we have (a′′′, a) in a sufficiently large
composition of Ewith itself. But as a′′′ ∈ C and a < C this contradicts Subclaim 1 item 1.

7.2 There is a jpq instance inside I

To finish the proof we start with I and, repeatedly, apply Proposition 7.1. The first application is
with J = I and the proper absorbing subuniverse is provided by the case we are working in. In
all the following applications I is the same and J is the instance produced by Proposition 7.1 in
the previous step.

Let I′ be the subinstance of I on which we cannot produce any further reductions; say the
instance is arc consistent with sets {A′x} and no A′x has a proper absorbing subuniverse. The
instance I′ is arc consistent and absorbing, it remains to prove that it is a jpq instance. We proceed
identically as in the no absorption case. Let x be any variable and p′, q′ be patterns, from x to
x, in instance I′. Let p, q be counterparts of these patterns in I (obtained in the same way q
was obtained from p in the previous section). Define pattern r = j(p + q) + p where j is given by
Corollary 5.3.

LetR ≤sub A2
x be the algebra obtained by taking all the solutions of this pattern and projecting

them to (startr, endr). By the choice of j, for every a ∈ Ax, we have (a, a) ∈ R. Let r′ = j(p′ + q′) + p′

and let R′ be defined from r′ in the same way Rwas obtained from R. By arc consistency of I′

we have R′ ≤sub (A′x)2.
Now restrict R toA′x and apply Proposition 6.7 to such a restriction and R′. The proposition

provides a constant pair inR′. SinceR′ ER the algebra consisting of constant pairs inR′ absorbs
the algebra consisting of constant pairs in R (which is the algebra of all constant pairs in Ax).
Therefore if for some a ∈ A′x we have (a, a) < R′ we would obtain a proper absorbing subuniverse
ofA′x — this contradicts our assumptions on I′. Thus R′ has all the constants fromA′x and the
instance I′ is jpq consistent which finishes the proof.

8 Acknowledgments

I would like to thank Libor Barto and Jakub Bulin for many fruitful discussions and simplifications
of some of the proofs in the paper. I would also like to thank the anonymous reviewers of this
paper and an earlier LICS version for pointing out some inconsistencies in the presentation and
other comments on improving readability of the paper.

References

[1] L. Barto and M. Kozik. Constraint Satisfaction Problems of bounded width. In Foundations of
Computer Science, 2009. FOCS ’09. 50th Annual IEEE Symposium on, pages 595–603, Oct 2009.

[2] L. Barto and M. Kozik. New conditions for Taylor varieties and CSP. In Logic in Computer
Science (LICS), 2010 25th Annual IEEE Symposium on, pages 100–109, July 2010.

[3] Libor Barto. The collapse of the bounded width hierarchy. Journal of Logic and Computation,
2014.

19

[4] Libor Barto and Marcin Kozik. Robust satisfiability of Constraint Satisfaction Problems. In
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12,
pages 931–940, New York, NY, USA, 2012. ACM.

[5] Libor Barto and Marcin Kozik. Constraint Satisfaction Problems solvable by local consistency
methods. J. ACM, 61(1):3:1–3:19, January 2014.

[6] Libor Barto, Marcin Kozik, and Todd Niven. Graphs, polymorphisms and the complexity of
homomorphism problems. In Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing, STOC ’08, pages 789–796, New York, NY, USA, 2008. ACM.

[7] Libor Barto, Marcin Kozik, and David Stanovský. Mal’tsev conditions, lack of absorption,
and solvability. Algebra universalis, 74(1):185–206, Sep 2015.

[8] Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have bounded
pathwidth duality. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in
Computer Science, LICS ’12, pages 125–134, Washington, DC, USA, 2012. IEEE Computer
Society.

[9] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In
Andrei Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017.

[10] Christian Bessiere and Romuald Debruyne. Theoretical analysis of singleton arc consistency
and its extensions. Artificial Intelligence, 172(1):29 – 41, 2008.

[11] Manuel Bodirsky and Hubie Chen. Peek arc consistency. Theoretical Computer Science,
411(2):445 – 453, 2010.

[12] Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Structure
theory and a symmetric boolean dichotomy. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, pages 1782–1801, Philadelphia,
PA, USA, 2018. Society for Industrial and Applied Mathematics.

[13] Andrei Bulatov. Bounded relational width. 2009. manuscript.

[14] Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Umans [30], pages
319–330.

[15] Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. Dualities for Constraint Satisfaction
Problems, pages 93–124. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[16] S. Burris and H.P. Sankappanavar. A course in universal algebra. Graduate texts in mathematics.
Springer-Verlag, 1981.

[17] Hubie Chen, Victor Dalmau, and Berit Grußien. Arc consistency and friends. Journal of Logic
and Computation, 23(1):87–108, 2013.

[18] Victor Dalmau and Andrei Krokhin. Majority constraints have bounded pathwidth duality.
European Journal of Combinatorics, 29(4):821 – 837, 2008. Homomorphisms: Structure and
Highlights Homomorphisms: Structure and Highlights.

[19] Victor Dalmau and Andrei Krokhin. Robust satisfiability for CSPs: Hardness and algorithmic
results. ACM Trans. Comput. Theory, 5(4):15:1–15:25, November 2013.

20

[20] Victor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Joxan Jaffar,
editor, Principles and Practice of Constraint Programming - CP’99, volume 1713 of Lecture Notes
in Computer Science, pages 159–173. Springer Berlin Heidelberg, 1999.

[21] VÃŋctor Dalmau, Marcin Kozik, Andrei Krokhin, Konstantin Makarychev, Yury Makarychev,
and Jakub OprÅąal. Robust algorithms with polynomial loss for near-unanimity CSPs, pages
340–357.

[22] Romuald Debruyne and Christian Bessiere. Some practicable filtering techniques for the
Constraint Satisfaction Problem. In In Proceedings of IJCAI’97, pages 412–417, 1997.

[23] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

[24] Ralph Freese and Ralph McKenzie. Maltsev families of varieties closed under join or maltsev
product. Algebra universalis, 77(1):29–50, Feb 2017.

[25] Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of almost-
satisfiable Horn SAT and exact hitting set. In Dana Randall, editor, SODA, pages 1574–1589.
SIAM, 2011.

[26] Jelena Jovanović, Petar Marković, Ralph McKenzie, and Matthew Moore. Optimal strong
mal’cev conditions for congruence meet-semidistributivity in locally finite varieties. Algebra
universalis, 76(3):305–325, Nov 2016.

[27] Marcin Kozik. Weak consistency notions for all the csps of bounded width. In Martin Grohe,
Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages
633–641. ACM, 2016.

[28] Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra universalis,
56(3-4):439–466, 2007.

[29] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. ACM.

[30] Chris Umans, editor. 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017. IEEE Computer Society, 2017.

[31] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Umans [30], pages 331–342.

21

	Introduction
	The main result
	Patterns in instances
	Propagation via patterns
	The jpq consistency and the main theorem

	Comparison of (selected) local consistency notions
	Arc consistency
	Notions solving all lcc CSPs
	Singleton Arc Consistency (SAC)
	Singleton Linear Arc Consistency (SLAC)
	The jpq consistency

	Algebraic consequences
	Into the proof of Theorem 2.3
	Properties of jpq consistent instances

	Reduction with no absorption
	Defining the subinstance
	The subinstance is arc consistent
	The subinstance is jpq consistent
	A proof of Proposition 6.6

	Reduction in the presence of absorption
	Shrinking arc consistent subinstances of I
	There is a jpq instance inside I

	Acknowledgments

